Spaces:
Running
Running
File size: 11,249 Bytes
2d48693 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
import typing as t
from functools import partial
import numpy as np
from copy import deepcopy
from .canvas import Canvas
from . import speedup
# 2D part
class Vec2d:
__slots__ = "x", "y", "arr"
def __init__(self, *args):
if len(args) == 1 and isinstance(args[0], Vec3d):
self.arr = Vec3d.narr
else:
assert len(args) == 2
self.arr = list(args)
self.x, self.y = [d if isinstance(d, int) else int(d + 0.5) for d in self.arr]
def __repr__(self):
return f"Vec2d({self.x}, {self.y})"
def __truediv__(self, other):
return (self.y - other.y) / (self.x - other.x)
def __eq__(self, other):
return self.x == other.x and self.y == other.y
def draw_line(
v1: Vec2d, v2: Vec2d, canvas: Canvas, color: t.Union[tuple, str] = "white"
):
"""
Draw a line with a specified color
https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm
"""
v1, v2 = deepcopy(v1), deepcopy(v2)
if v1 == v2:
canvas.draw((v1.x, v1.y), color=color)
return
steep = abs(v1.y - v2.y) > abs(v1.x - v2.x)
if steep:
v1.x, v1.y = v1.y, v1.x
v2.x, v2.y = v2.y, v2.x
v1, v2 = (v1, v2) if v1.x < v2.x else (v2, v1)
slope = abs((v1.y - v2.y) / (v1.x - v2.x))
y = v1.y
error: float = 0
incr = 1 if v1.y < v2.y else -1
dots = []
for x in range(int(v1.x), int(v2.x + 0.5)):
dots.append((int(y), x) if steep else (x, int(y)))
error += slope
if abs(error) >= 0.5:
y += incr
error -= 1
canvas.draw(dots, color=color)
def draw_triangle(v1, v2, v3, canvas, color, wireframe=False):
"""
Draw a triangle with 3 ordered vertices
http://www.sunshine2k.de/coding/java/TriangleRasterization/TriangleRasterization.html
"""
_draw_line = partial(draw_line, canvas=canvas, color=color)
if wireframe:
_draw_line(v1, v2)
_draw_line(v2, v3)
_draw_line(v1, v3)
return
def sort_vertices_asc_by_y(vertices):
return sorted(vertices, key=lambda v: v.y)
def fill_bottom_flat_triangle(v1, v2, v3):
invslope1 = (v2.x - v1.x) / (v2.y - v1.y)
invslope2 = (v3.x - v1.x) / (v3.y - v1.y)
x1 = x2 = v1.x
y = v1.y
while y <= v2.y:
_draw_line(Vec2d(x1, y), Vec2d(x2, y))
x1 += invslope1
x2 += invslope2
y += 1
def fill_top_flat_triangle(v1, v2, v3):
invslope1 = (v3.x - v1.x) / (v3.y - v1.y)
invslope2 = (v3.x - v2.x) / (v3.y - v2.y)
x1 = x2 = v3.x
y = v3.y
while y > v2.y:
_draw_line(Vec2d(x1, y), Vec2d(x2, y))
x1 -= invslope1
x2 -= invslope2
y -= 1
v1, v2, v3 = sort_vertices_asc_by_y((v1, v2, v3))
# 填充
if v1.y == v2.y == v3.y:
pass
elif v2.y == v3.y:
fill_bottom_flat_triangle(v1, v2, v3)
elif v1.y == v2.y:
fill_top_flat_triangle(v1, v2, v3)
else:
v4 = Vec2d(int(v1.x + (v2.y - v1.y) / (v3.y - v1.y) * (v3.x - v1.x)), v2.y)
fill_bottom_flat_triangle(v1, v2, v4)
fill_top_flat_triangle(v2, v4, v3)
# 3D part
class Vec3d:
__slots__ = "x", "y", "z", "arr"
def __init__(self, *args):
# for Vec4d cast
if len(args) == 1 and isinstance(args[0], Vec4d):
vec4 = args[0]
arr_value = (vec4.x, vec4.y, vec4.z)
else:
assert len(args) == 3
arr_value = args
self.arr = np.array(arr_value, dtype=np.float64)
self.x, self.y, self.z = self.arr
def __repr__(self):
return repr(f"Vec3d({','.join([repr(d) for d in self.arr])})")
def __sub__(self, other):
return self.__class__(*[ds - do for ds, do in zip(self.arr, other.arr)])
def __bool__(self):
""" False for zero vector (0, 0, 0)
"""
return any(self.arr)
class Mat4d:
def __init__(self, narr=None, value=None):
self.value = np.matrix(narr) if value is None else value
def __repr__(self):
return repr(self.value)
def __mul__(self, other):
return self.__class__(value=self.value * other.value)
class Vec4d(Mat4d):
def __init__(self, *narr, value=None):
if value is not None:
self.value = value
elif len(narr) == 1 and isinstance(narr[0], Mat4d):
self.value = narr[0].value
else:
assert len(narr) == 4
self.value = np.matrix([[d] for d in narr])
self.x, self.y, self.z, self.w = (
self.value[0, 0],
self.value[1, 0],
self.value[2, 0],
self.value[3, 0],
)
self.arr = self.value.reshape((1, 4))
# Math util
def normalize(v: Vec3d):
return Vec3d(*speedup.normalize(*v.arr))
def dot_product(a: Vec3d, b: Vec3d):
return speedup.dot_product(*a.arr, *b.arr)
def cross_product(a: Vec3d, b: Vec3d):
return Vec3d(*speedup.cross_product(*a.arr, *b.arr))
BASE_LIGHT = 0.3
def get_light_intensity(face) -> float:
light0 = Vec3d(-2, 4, -10)
light1 = Vec3d(10, 4, -2)
v1, v2, v3 = face
up = normalize(cross_product(v2 - v1, v3 - v1))
return dot_product(up, normalize(light0))*0.6 + dot_product(up, normalize(light1))*0.6 + BASE_LIGHT
def look_at(eye: Vec3d, target: Vec3d, up: Vec3d = Vec3d(0, -1, 0)) -> Mat4d:
"""
http://www.songho.ca/opengl/gl_camera.html#lookat
Args:
eye: 摄像机的世界坐标位置
target: 观察点的位置
up: 就是你想让摄像机立在哪个方向
https://stackoverflow.com/questions/10635947/what-exactly-is-the-up-vector-in-opengls-lookat-function
这里默认使用了 0, -1, 0, 因为 blender 导出来的模型数据似乎有问题,导致y轴总是反的,于是把摄像机的up也翻一下得了。
"""
f = normalize(eye - target)
l = normalize(cross_product(up, f)) # noqa: E741
u = cross_product(f, l)
rotate_matrix = Mat4d(
[[l.x, l.y, l.z, 0], [u.x, u.y, u.z, 0], [f.x, f.y, f.z, 0], [0, 0, 0, 1.0]]
)
translate_matrix = Mat4d(
[[1, 0, 0, -eye.x], [0, 1, 0, -eye.y], [0, 0, 1, -eye.z], [0, 0, 0, 1.0]]
)
return Mat4d(value=(rotate_matrix * translate_matrix).value)
def perspective_project(r, t, n, f, b=None, l=None): # noqa: E741
"""
目的:
把相机坐标转换成投影在视网膜的范围在(-1, 1)的笛卡尔坐标
原理:
对于x,y坐标,相似三角形可以算出投影点的x,y
对于z坐标,是假设了near是-1,far是1,然后带进去算的
http://www.songho.ca/opengl/gl_projectionmatrix.html
https://www.scratchapixel.com/lessons/3d-basic-rendering/perspective-and-orthographic-projection-matrix/opengl-perspective-projection-matrix
推导出来的矩阵:
[
2n/(r-l) 0 (r+l/r-l) 0
0 2n/(t-b) (t+b)/(t-b) 0
0 0 -(f+n)/f-n (-2*f*n)/(f-n)
0 0 -1 0
]
实际上由于我们用的视网膜(near pane)是个关于远点对称的矩形,所以矩阵简化为:
[
n/r 0 0 0
0 n/t 0 0
0 0 -(f+n)/f-n (-2*f*n)/(f-n)
0 0 -1 0
]
Args:
r: right, t: top, n: near, f: far, b: bottom, l: left
"""
return Mat4d(
[
[n / r, 0, 0, 0],
[0, n / t, 0, 0],
[0, 0, -(f + n) / (f - n), (-2 * f * n) / (f - n)],
[0, 0, -1, 0],
]
)
def draw(screen_vertices, world_vertices, model, canvas, wireframe=True):
"""standard algorithm
"""
for triangle_indices in model.indices:
vertex_group = [screen_vertices[idx - 1] for idx in triangle_indices]
face = [Vec3d(world_vertices[idx - 1]) for idx in triangle_indices]
if wireframe:
draw_triangle(*vertex_group, canvas=canvas, color="black", wireframe=True)
else:
intensity = get_light_intensity(face)
if intensity > 0:
draw_triangle(
*vertex_group, canvas=canvas, color=(int(intensity * 255),) * 3
)
def draw_with_z_buffer(screen_vertices, world_vertices, model, canvas):
""" z-buffer algorithm
"""
intensities = []
triangles = []
for i, triangle_indices in enumerate(model.indices):
screen_triangle = [screen_vertices[idx - 1] for idx in triangle_indices]
uv_triangle = [model.uv_vertices[idx - 1] for idx in model.uv_indices[i]]
world_triangle = [Vec3d(world_vertices[idx - 1]) for idx in triangle_indices]
intensities.append(abs(get_light_intensity(world_triangle)))
# take off the class to let Cython work
triangles.append(
[np.append(screen_triangle[i].arr, uv_triangle[i]) for i in range(3)]
)
faces = speedup.generate_faces(
np.array(triangles, dtype=np.float64), model.texture_width, model.texture_height
)
for face_dots in faces:
for dot in face_dots:
intensity = intensities[dot[0]]
u, v = dot[3], dot[4]
color = model.texture_array[u, v]
canvas.draw((dot[1], dot[2]), tuple(int(c * intensity) for c in color[:3]))
# TODO: add object rendering mode (no texture)
# canvas.draw((dot[1], dot[2]), (int(255 * intensity),) * 3)
def render(model, height, width, filename, cam_loc, wireframe=False):
"""
Args:
model: the Model object
height: cavas height
width: cavas width
picname: picture file name
"""
model_matrix = Mat4d([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]])
# TODO: camera configration
view_matrix = look_at(Vec3d(cam_loc[0], cam_loc[1], cam_loc[2]), Vec3d(0, 0, 0))
projection_matrix = perspective_project(0.5, 0.5, 3, 1000)
world_vertices = []
def mvp(v):
world_vertex = model_matrix * v
world_vertices.append(Vec4d(world_vertex))
return projection_matrix * view_matrix * world_vertex
def ndc(v):
"""
各个坐标同时除以 w,得到 NDC 坐标
"""
v = v.value
w = v[3, 0]
x, y, z = v[0, 0] / w, v[1, 0] / w, v[2, 0] / w
return Mat4d([[x], [y], [z], [1 / w]])
def viewport(v):
x = y = 0
w, h = width, height
n, f = 0.3, 1000
return Vec3d(
w * 0.5 * v.value[0, 0] + x + w * 0.5,
h * 0.5 * v.value[1, 0] + y + h * 0.5,
0.5 * (f - n) * v.value[2, 0] + 0.5 * (f + n),
)
# the render pipeline
screen_vertices = [viewport(ndc(mvp(v))) for v in model.vertices]
with Canvas(filename, height, width) as canvas:
if wireframe:
draw(screen_vertices, world_vertices, model, canvas)
else:
draw_with_z_buffer(screen_vertices, world_vertices, model, canvas)
render_img = canvas.add_white_border().copy()
return render_img |