File size: 5,516 Bytes
234eac0
 
 
 
 
 
 
 
 
 
 
 
 
8c0f8b8
 
 
234eac0
 
8c0f8b8
 
 
 
 
234eac0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c0f8b8
234eac0
8c0f8b8
234eac0
 
 
 
 
 
8c0f8b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
234eac0
 
 
8c0f8b8
 
 
 
 
 
 
 
 
 
 
 
 
 
234eac0
8c0f8b8
 
234eac0
8c0f8b8
 
234eac0
8c0f8b8
 
 
 
 
 
 
 
 
 
234eac0
8c0f8b8
234eac0
8c0f8b8
234eac0
8c0f8b8
234eac0
 
 
 
 
8c0f8b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
234eac0
 
 
 
 
 
8c0f8b8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import os
from typing import List
from chainlit.types import AskFileResponse
from aimakerspace.text_utils import CharacterTextSplitter, TextFileLoader
from aimakerspace.openai_utils.prompts import (
    UserRolePrompt,
    SystemRolePrompt,
    AssistantRolePrompt,
)
from aimakerspace.openai_utils.embedding import EmbeddingModel
from aimakerspace.vectordatabase import VectorDatabase
from aimakerspace.openai_utils.chatmodel import ChatOpenAI
import chainlit as cl
import tempfile
import pandas as pd
import pdfplumber

system_template = """\
Use the following context to answer the user's question. If you cannot find the answer in the context, 
say you don't know the answer. Additionally, if the user requests a summary or context overview, 
generate an engaging and concise summary that captures the main ideas with an interesting and appealing tone.

"""
system_role_prompt = SystemRolePrompt(system_template)

user_prompt_template = """\
Context:
{context}

Question:
{question}
"""
user_role_prompt = UserRolePrompt(user_prompt_template)

class RetrievalAugmentedQAPipeline:
    def __init__(self, llm: ChatOpenAI(), vector_db_retriever: VectorDatabase) -> None:
        self.llm = llm
        self.vector_db_retriever = vector_db_retriever

    async def arun_pipeline(self, user_query: str):
        context_list = self.vector_db_retriever.search_by_text(user_query, k=4)

        context_prompt = ""
        for context in context_list:
            context_prompt += context[0] + "\n"

        formatted_system_prompt = system_role_prompt.create_message()

        formatted_user_prompt = user_role_prompt.create_message(question=user_query, context=context_prompt)

        async def generate_response():
            async for chunk in self.llm.astream([formatted_system_prompt, formatted_user_prompt]):
                yield chunk

        return {"response": generate_response(), "context": context_list}

text_splitter = CharacterTextSplitter()

def process_text_file(file: AskFileResponse):
    with tempfile.NamedTemporaryFile(mode="wb", delete=False, suffix=".txt") as temp_file:
        temp_file_path = temp_file.name
        temp_file.write(file.content)

    text_loader = TextFileLoader(temp_file_path)
    documents = text_loader.load_documents()
    texts = text_splitter.split_texts(documents)
    return texts

def process_pdf_file(file: AskFileResponse):
    with tempfile.NamedTemporaryFile(mode="wb", delete=False, suffix=".pdf") as temp_file:
        temp_file_path = temp_file.name
        temp_file.write(file.content)

    extracted_text = ""
    with pdfplumber.open(temp_file_path) as pdf:
        for page in pdf.pages:
            extracted_text += page.extract_text()

    texts = text_splitter.split_texts([extracted_text])
    return texts

def process_csv_file(file: AskFileResponse):
    with tempfile.NamedTemporaryFile(mode="wb", delete=False, suffix=".csv") as temp_file:
        temp_file_path = temp_file.name
        temp_file.write(file.content)

    df = pd.read_csv(temp_file_path)
    texts = df.apply(lambda row: ' '.join(row.astype(str)), axis=1).tolist()
    return text_splitter.split_texts(texts)

@cl.on_chat_start
async def on_chat_start():
    cl.user_session.set("all_texts", [])

    files = await cl.AskFileMessage(
        content="Please upload one or more Text, PDF, or CSV files to begin!",
        accept=["text/plain", "application/pdf", "text/csv"],
        max_size_mb=20,
        timeout=180,
    ).send()

    if not files:
        await cl.Message(content="No files were uploaded. Please upload at least one file to proceed.").send()
        return

    all_texts = cl.user_session.get("all_texts", [])

    for file in files:
        file_type = file.name.split(".")[-1].lower()

        msg = cl.Message(content=f"Processing `{file.name}`...", disable_human_feedback=True)
        await msg.send()

        # Process each file based on its type
        if file_type == "txt":
            texts = process_text_file(file)
        elif file_type == "pdf":
            texts = process_pdf_file(file)
        elif file_type == "csv":
            texts = process_csv_file(file)
        else:
            await cl.Message(content=f"Unsupported file type: `{file.name}`. Please upload text, PDF, or CSV files.").send()
            continue

        all_texts.extend(texts)  # Combine texts from all uploaded files

    cl.user_session.set("all_texts", all_texts)

    await cl.Message(content="Files processed! You can now start asking questions.").send()

@cl.on_message
async def main(message):
    chain = cl.user_session.get("chain")

    if not chain:
        all_texts = cl.user_session.get("all_texts")
        if not all_texts:
            await cl.Message(content="Please upload at least one file before asking questions.").send()
            return

        # Create a dict vector store
        vector_db = VectorDatabase()
        vector_db = await vector_db.abuild_from_list(all_texts)
        
        chat_openai = ChatOpenAI()

        # Create a chain
        retrieval_augmented_qa_pipeline = RetrievalAugmentedQAPipeline(
            vector_db_retriever=vector_db,
            llm=chat_openai
        )

        cl.user_session.set("chain", retrieval_augmented_qa_pipeline)
        chain = retrieval_augmented_qa_pipeline

    msg = cl.Message(content="")
    result = await chain.arun_pipeline(message.content)

    async for stream_resp in result["response"]:
        await msg.stream_token(stream_resp)

    await msg.send()