File size: 1,306 Bytes
29d7beb
f16c081
 
 
 
 
 
 
 
c10cdf4
f16c081
 
 
 
 
 
 
 
 
 
e78b5fb
f16c081
 
 
 
 
c10cdf4
 
 
f16c081
 
e78b5fb
f16c081
 
c10cdf4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import gradio as gr
from transformers import pipeline
import torch

# Load the Whisper model pipeline for speech recognition with optimizations
model_name = "Vira21/Whisper-Base-KhmerV2"
whisper_pipeline = pipeline(
    "automatic-speech-recognition", 
    model=model_name,
    device=0 if torch.cuda.is_available() else -1  # Use GPU if available, otherwise use CPU
)

def transcribe_audio(audio):
    try:
        # Process and transcribe the audio
        result = whisper_pipeline(audio)["text"]
        return result
    except Exception as e:
        # Handle errors and return an error message
        return f"An error occurred during transcription: {str(e)}"

# Gradio Interface with optimizations
interface = gr.Interface(
    fn=transcribe_audio,
    inputs=gr.Audio(type="filepath"),  
    outputs="text",
    title="Whisper Base Khmer Speech-to-Text",
    description="Upload an audio file or record your voice to get the transcription in Khmer.",
    examples=[["Example Audio/126.wav"]. ["Example Audio/tomholland28282.wav"]],
    allow_flagging="never"  # Disables flagging to save resources
)

# Launch the app with queue enabled for better handling on free CPU
if __name__ == "__main__":
    interface.queue()  # Enable asynchronous queuing for better performance
    interface.launch()