File size: 5,478 Bytes
fa30ae0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import argparse
from functools import partial
import cv2
import requests
import os
from io import BytesIO
from PIL import Image
import numpy as np
from pathlib import Path
import gradio as gr

import warnings

import torch

os.system("python setup.py build develop --user")
os.system("pip install packaging==21.3")
warnings.filterwarnings("ignore")


from groundingdino.models import build_model
from groundingdino.util.slconfig import SLConfig
from groundingdino.util.utils import clean_state_dict
from groundingdino.util.inference import annotate, load_image, predict
import groundingdino.datasets.transforms as T

from huggingface_hub import hf_hub_download



# Use this command for evaluate the GLIP-T model
config_file = "groundingdino/config/GroundingDINO_SwinT_OGC.py"
ckpt_repo_id = "ShilongLiu/GroundingDINO"
ckpt_filenmae = "groundingdino_swint_ogc.pth"


def load_model_hf(model_config_path, repo_id, filename, device='cuda'):
    args = SLConfig.fromfile(model_config_path) 
    model = build_model(args)
    args.device = device

    cache_file = hf_hub_download(repo_id=repo_id, filename=filename)
    checkpoint = torch.load(cache_file, map_location='cuda')
    log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False)
    print("Model loaded from {} \n => {}".format(cache_file, log))
    _ = model.eval()
    return model    

def image_transform_grounding(init_image):
    transform = T.Compose([
        T.RandomResize([800], max_size=1333),
        T.ToTensor(),
        T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ])
    image, _ = transform(init_image, None) # 3, h, w
    return init_image, image

def image_transform_grounding_for_vis(init_image):
    transform = T.Compose([
        T.RandomResize([800], max_size=1333),
    ])
    image, _ = transform(init_image, None) # 3, h, w
    return image

model = load_model_hf(config_file, ckpt_repo_id, ckpt_filenmae)

def run_grounding(input_image, grounding_caption, box_threshold, text_threshold):
    init_image = input_image.convert("RGB")
    original_size = init_image.size

    _, image_tensor = image_transform_grounding(init_image)
    image_pil: Image = image_transform_grounding_for_vis(init_image)

    # run grounding dino
    boxes, logits, phrases = predict(model, image_tensor, grounding_caption, box_threshold, text_threshold, device='cuda')
    annotated_frame = annotate(image_source=np.asarray(image_pil), boxes=boxes, logits=logits, phrases=phrases)
    image_with_box = Image.fromarray(cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB))
    h, w, _ = np.asarray(image_pil).shape
    boxes = boxes * torch.Tensor([w, h, w, h])
    detections = {}
    
    # write to json
    for phrase, box, score in zip(phrases, boxes, logits):
        # from xywh to xyxy
        box[:2] -= box[2:] / 2
        box[2:] += box[:2]
        if phrase not in detections:
            detections[phrase] = []
        detections[phrase].append(
            {
                "xmin": float(box[0]),
                "ymin": float(box[1]),
                "xmax": float(box[2]),
                "ymax": float(box[3]),
                "score": float(score),
            }
        )

    output = {
        "grounding_dino_results": {
            "detections": detections,
        }
    }
    
    return image_with_box, output

if __name__ == "__main__":
    
    parser = argparse.ArgumentParser("Grounding DINO demo", add_help=True)
    parser.add_argument("--debug", action="store_true", help="using debug mode")
    parser.add_argument("--share", action="store_true", help="share the app")
    args = parser.parse_args()
    css = """
  #mkd {
    height: 500px; 
    overflow: auto; 
    border: 1px solid #ccc; 
  }
"""
    with gr.Blocks(theme='trimble/trimble_ai_theme') as demo:
        gr.HTML("<img src=\"https://huggingface.co/spaces/trimble/trimble_ai_theme/resolve/main/images/logo.png\">")
        gr.Markdown("<h1><center>Grounding DINO<h1><center>")
        gr.Markdown("<h3><center>Open-World Detection with <a href='https://github.com/IDEA-Research/GroundingDINO'>Grounding DINO</a><h3><center>")

        with gr.Row():
            with gr.Column():
                input_image = gr.Image(source='upload', type="pil")
                grounding_caption = gr.Textbox(label="Detection Prompt")
                run_button = gr.Button(label="Run")
                with gr.Accordion("Advanced options", open=False):
                    box_threshold = gr.Slider(
                        label="Box Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
                    )
                    text_threshold = gr.Slider(
                        label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
                    )

            with gr.Column():
                gallery = gr.outputs.Image(
                    type="pil",
                ).style(full_width=True, full_height=True)
                output_json = gr.JSON()

        run_button.click(fn=run_grounding, inputs=[
                        input_image, grounding_caption, box_threshold, text_threshold], outputs=[gallery, output_json])
        gr.Examples(
          [["demo.jpg", "a person", 0.25, 0.25]],
          inputs = [input_image, grounding_caption, box_threshold, text_threshold],
          outputs = [gallery, output_json],
          fn=run_grounding,
          cache_examples=True,
          label='Try this example input!'
      )
    demo.launch()