Spaces:
Runtime error
Runtime error
File size: 5,478 Bytes
fa30ae0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
import argparse
from functools import partial
import cv2
import requests
import os
from io import BytesIO
from PIL import Image
import numpy as np
from pathlib import Path
import gradio as gr
import warnings
import torch
os.system("python setup.py build develop --user")
os.system("pip install packaging==21.3")
warnings.filterwarnings("ignore")
from groundingdino.models import build_model
from groundingdino.util.slconfig import SLConfig
from groundingdino.util.utils import clean_state_dict
from groundingdino.util.inference import annotate, load_image, predict
import groundingdino.datasets.transforms as T
from huggingface_hub import hf_hub_download
# Use this command for evaluate the GLIP-T model
config_file = "groundingdino/config/GroundingDINO_SwinT_OGC.py"
ckpt_repo_id = "ShilongLiu/GroundingDINO"
ckpt_filenmae = "groundingdino_swint_ogc.pth"
def load_model_hf(model_config_path, repo_id, filename, device='cuda'):
args = SLConfig.fromfile(model_config_path)
model = build_model(args)
args.device = device
cache_file = hf_hub_download(repo_id=repo_id, filename=filename)
checkpoint = torch.load(cache_file, map_location='cuda')
log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False)
print("Model loaded from {} \n => {}".format(cache_file, log))
_ = model.eval()
return model
def image_transform_grounding(init_image):
transform = T.Compose([
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
image, _ = transform(init_image, None) # 3, h, w
return init_image, image
def image_transform_grounding_for_vis(init_image):
transform = T.Compose([
T.RandomResize([800], max_size=1333),
])
image, _ = transform(init_image, None) # 3, h, w
return image
model = load_model_hf(config_file, ckpt_repo_id, ckpt_filenmae)
def run_grounding(input_image, grounding_caption, box_threshold, text_threshold):
init_image = input_image.convert("RGB")
original_size = init_image.size
_, image_tensor = image_transform_grounding(init_image)
image_pil: Image = image_transform_grounding_for_vis(init_image)
# run grounding dino
boxes, logits, phrases = predict(model, image_tensor, grounding_caption, box_threshold, text_threshold, device='cuda')
annotated_frame = annotate(image_source=np.asarray(image_pil), boxes=boxes, logits=logits, phrases=phrases)
image_with_box = Image.fromarray(cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB))
h, w, _ = np.asarray(image_pil).shape
boxes = boxes * torch.Tensor([w, h, w, h])
detections = {}
# write to json
for phrase, box, score in zip(phrases, boxes, logits):
# from xywh to xyxy
box[:2] -= box[2:] / 2
box[2:] += box[:2]
if phrase not in detections:
detections[phrase] = []
detections[phrase].append(
{
"xmin": float(box[0]),
"ymin": float(box[1]),
"xmax": float(box[2]),
"ymax": float(box[3]),
"score": float(score),
}
)
output = {
"grounding_dino_results": {
"detections": detections,
}
}
return image_with_box, output
if __name__ == "__main__":
parser = argparse.ArgumentParser("Grounding DINO demo", add_help=True)
parser.add_argument("--debug", action="store_true", help="using debug mode")
parser.add_argument("--share", action="store_true", help="share the app")
args = parser.parse_args()
css = """
#mkd {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(theme='trimble/trimble_ai_theme') as demo:
gr.HTML("<img src=\"https://huggingface.co/spaces/trimble/trimble_ai_theme/resolve/main/images/logo.png\">")
gr.Markdown("<h1><center>Grounding DINO<h1><center>")
gr.Markdown("<h3><center>Open-World Detection with <a href='https://github.com/IDEA-Research/GroundingDINO'>Grounding DINO</a><h3><center>")
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="pil")
grounding_caption = gr.Textbox(label="Detection Prompt")
run_button = gr.Button(label="Run")
with gr.Accordion("Advanced options", open=False):
box_threshold = gr.Slider(
label="Box Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
)
text_threshold = gr.Slider(
label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
)
with gr.Column():
gallery = gr.outputs.Image(
type="pil",
).style(full_width=True, full_height=True)
output_json = gr.JSON()
run_button.click(fn=run_grounding, inputs=[
input_image, grounding_caption, box_threshold, text_threshold], outputs=[gallery, output_json])
gr.Examples(
[["demo.jpg", "a person", 0.25, 0.25]],
inputs = [input_image, grounding_caption, box_threshold, text_threshold],
outputs = [gallery, output_json],
fn=run_grounding,
cache_examples=True,
label='Try this example input!'
)
demo.launch()
|