File size: 15,482 Bytes
fa30ae0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
# ------------------------------------------------------------------------
# Grounding DINO
# url: https://github.com/IDEA-Research/GroundingDINO
# Copyright (c) 2023 IDEA. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# Deformable DETR
# Copyright (c) 2020 SenseTime. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------------------------------
# Modified from:
# https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/ops/functions/ms_deform_attn_func.py
# https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/ops/modules/ms_deform_attn.py
# https://github.com/open-mmlab/mmcv/blob/master/mmcv/ops/multi_scale_deform_attn.py
# ------------------------------------------------------------------------------------------------

import math
import warnings
from typing import Optional

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Function
from torch.autograd.function import once_differentiable
from torch.nn.init import constant_, xavier_uniform_

try:
    from groundingdino import _C
except:
    warnings.warn("Failed to load custom C++ ops. Running on CPU mode Only!")


# helpers
def _is_power_of_2(n):
    if (not isinstance(n, int)) or (n < 0):
        raise ValueError("invalid input for _is_power_of_2: {} (type: {})".format(n, type(n)))
    return (n & (n - 1) == 0) and n != 0


class MultiScaleDeformableAttnFunction(Function):
    @staticmethod
    def forward(
        ctx,
        value,
        value_spatial_shapes,
        value_level_start_index,
        sampling_locations,
        attention_weights,
        im2col_step,
    ):
        ctx.im2col_step = im2col_step
        output = _C.ms_deform_attn_forward(
            value,
            value_spatial_shapes,
            value_level_start_index,
            sampling_locations,
            attention_weights,
            ctx.im2col_step,
        )
        ctx.save_for_backward(
            value,
            value_spatial_shapes,
            value_level_start_index,
            sampling_locations,
            attention_weights,
        )
        return output

    @staticmethod
    @once_differentiable
    def backward(ctx, grad_output):
        (
            value,
            value_spatial_shapes,
            value_level_start_index,
            sampling_locations,
            attention_weights,
        ) = ctx.saved_tensors
        grad_value, grad_sampling_loc, grad_attn_weight = _C.ms_deform_attn_backward(
            value,
            value_spatial_shapes,
            value_level_start_index,
            sampling_locations,
            attention_weights,
            grad_output,
            ctx.im2col_step,
        )

        return grad_value, None, None, grad_sampling_loc, grad_attn_weight, None


def multi_scale_deformable_attn_pytorch(
    value: torch.Tensor,
    value_spatial_shapes: torch.Tensor,
    sampling_locations: torch.Tensor,
    attention_weights: torch.Tensor,
) -> torch.Tensor:

    bs, _, num_heads, embed_dims = value.shape
    _, num_queries, num_heads, num_levels, num_points, _ = sampling_locations.shape
    value_list = value.split([H_ * W_ for H_, W_ in value_spatial_shapes], dim=1)
    sampling_grids = 2 * sampling_locations - 1
    sampling_value_list = []
    for level, (H_, W_) in enumerate(value_spatial_shapes):
        # bs, H_*W_, num_heads, embed_dims ->
        # bs, H_*W_, num_heads*embed_dims ->
        # bs, num_heads*embed_dims, H_*W_ ->
        # bs*num_heads, embed_dims, H_, W_
        value_l_ = (
            value_list[level].flatten(2).transpose(1, 2).reshape(bs * num_heads, embed_dims, H_, W_)
        )
        # bs, num_queries, num_heads, num_points, 2 ->
        # bs, num_heads, num_queries, num_points, 2 ->
        # bs*num_heads, num_queries, num_points, 2
        sampling_grid_l_ = sampling_grids[:, :, :, level].transpose(1, 2).flatten(0, 1)
        # bs*num_heads, embed_dims, num_queries, num_points
        sampling_value_l_ = F.grid_sample(
            value_l_, sampling_grid_l_, mode="bilinear", padding_mode="zeros", align_corners=False
        )
        sampling_value_list.append(sampling_value_l_)
    # (bs, num_queries, num_heads, num_levels, num_points) ->
    # (bs, num_heads, num_queries, num_levels, num_points) ->
    # (bs, num_heads, 1, num_queries, num_levels*num_points)
    attention_weights = attention_weights.transpose(1, 2).reshape(
        bs * num_heads, 1, num_queries, num_levels * num_points
    )
    output = (
        (torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights)
        .sum(-1)
        .view(bs, num_heads * embed_dims, num_queries)
    )
    return output.transpose(1, 2).contiguous()


class MultiScaleDeformableAttention(nn.Module):
    """Multi-Scale Deformable Attention Module used in Deformable-DETR

    `Deformable DETR: Deformable Transformers for End-to-End Object Detection.
    <https://arxiv.org/pdf/2010.04159.pdf>`_.

    Args:
        embed_dim (int): The embedding dimension of Attention. Default: 256.
        num_heads (int): The number of attention heads. Default: 8.
        num_levels (int): The number of feature map used in Attention. Default: 4.
        num_points (int): The number of sampling points for each query
            in each head. Default: 4.
        img2col_steps (int): The step used in image_to_column. Defualt: 64.
            dropout (float): Dropout layer used in output. Default: 0.1.
        batch_first (bool): if ``True``, then the input and output tensor will be
            provided as `(bs, n, embed_dim)`. Default: False. `(n, bs, embed_dim)`
    """

    def __init__(
        self,
        embed_dim: int = 256,
        num_heads: int = 8,
        num_levels: int = 4,
        num_points: int = 4,
        img2col_step: int = 64,
        batch_first: bool = False,
    ):
        super().__init__()
        if embed_dim % num_heads != 0:
            raise ValueError(
                "embed_dim must be divisible by num_heads, but got {} and {}".format(
                    embed_dim, num_heads
                )
            )
        head_dim = embed_dim // num_heads

        self.batch_first = batch_first

        if not _is_power_of_2(head_dim):
            warnings.warn(
                """
                You'd better set d_model in MSDeformAttn to make sure that
                each dim of the attention head a power of 2, which is more efficient.
                """
            )

        self.im2col_step = img2col_step
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.num_levels = num_levels
        self.num_points = num_points
        self.sampling_offsets = nn.Linear(embed_dim, num_heads * num_levels * num_points * 2)
        self.attention_weights = nn.Linear(embed_dim, num_heads * num_levels * num_points)
        self.value_proj = nn.Linear(embed_dim, embed_dim)
        self.output_proj = nn.Linear(embed_dim, embed_dim)

        self.init_weights()

    def _reset_parameters(self):
        return self.init_weights()

    def init_weights(self):
        """
        Default initialization for Parameters of Module.
        """
        constant_(self.sampling_offsets.weight.data, 0.0)
        thetas = torch.arange(self.num_heads, dtype=torch.float32) * (
            2.0 * math.pi / self.num_heads
        )
        grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
        grid_init = (
            (grid_init / grid_init.abs().max(-1, keepdim=True)[0])
            .view(self.num_heads, 1, 1, 2)
            .repeat(1, self.num_levels, self.num_points, 1)
        )
        for i in range(self.num_points):
            grid_init[:, :, i, :] *= i + 1
        with torch.no_grad():
            self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1))
        constant_(self.attention_weights.weight.data, 0.0)
        constant_(self.attention_weights.bias.data, 0.0)
        xavier_uniform_(self.value_proj.weight.data)
        constant_(self.value_proj.bias.data, 0.0)
        xavier_uniform_(self.output_proj.weight.data)
        constant_(self.output_proj.bias.data, 0.0)

    def freeze_sampling_offsets(self):
        print("Freeze sampling offsets")
        self.sampling_offsets.weight.requires_grad = False
        self.sampling_offsets.bias.requires_grad = False

    def freeze_attention_weights(self):
        print("Freeze attention weights")
        self.attention_weights.weight.requires_grad = False
        self.attention_weights.bias.requires_grad = False

    def forward(
        self,
        query: torch.Tensor,
        key: Optional[torch.Tensor] = None,
        value: Optional[torch.Tensor] = None,
        query_pos: Optional[torch.Tensor] = None,
        key_padding_mask: Optional[torch.Tensor] = None,
        reference_points: Optional[torch.Tensor] = None,
        spatial_shapes: Optional[torch.Tensor] = None,
        level_start_index: Optional[torch.Tensor] = None,
        **kwargs
    ) -> torch.Tensor:

        """Forward Function of MultiScaleDeformableAttention

        Args:
            query (torch.Tensor): Query embeddings with shape
                `(num_query, bs, embed_dim)`
            key (torch.Tensor): Key embeddings with shape
                `(num_key, bs, embed_dim)`
            value (torch.Tensor): Value embeddings with shape
                `(num_key, bs, embed_dim)`
            query_pos (torch.Tensor): The position embedding for `query`. Default: None.
            key_padding_mask (torch.Tensor): ByteTensor for `query`, with shape `(bs, num_key)`,
                indicating which elements within `key` to be ignored in attention.
            reference_points (torch.Tensor): The normalized reference points
                with shape `(bs, num_query, num_levels, 2)`,
                all elements is range in [0, 1], top-left (0, 0),
                bottom-right (1, 1), including padding are.
                or `(N, Length_{query}, num_levels, 4)`, add additional
                two dimensions `(h, w)` to form reference boxes.
            spatial_shapes (torch.Tensor): Spatial shape of features in different levels.
                With shape `(num_levels, 2)`, last dimension represents `(h, w)`.
            level_start_index (torch.Tensor): The start index of each level. A tensor with
                shape `(num_levels, )` which can be represented as
                `[0, h_0 * w_0, h_0 * w_0 + h_1 * w_1, ...]`.

        Returns:
            torch.Tensor: forward results with shape `(num_query, bs, embed_dim)`
        """

        if value is None:
            value = query

        if query_pos is not None:
            query = query + query_pos

        if not self.batch_first:
            # change to (bs, num_query ,embed_dims)
            query = query.permute(1, 0, 2)
            value = value.permute(1, 0, 2)

        bs, num_query, _ = query.shape
        bs, num_value, _ = value.shape

        assert (spatial_shapes[:, 0] * spatial_shapes[:, 1]).sum() == num_value

        value = self.value_proj(value)
        if key_padding_mask is not None:
            value = value.masked_fill(key_padding_mask[..., None], float(0))
        value = value.view(bs, num_value, self.num_heads, -1)
        sampling_offsets = self.sampling_offsets(query).view(
            bs, num_query, self.num_heads, self.num_levels, self.num_points, 2
        )
        attention_weights = self.attention_weights(query).view(
            bs, num_query, self.num_heads, self.num_levels * self.num_points
        )
        attention_weights = attention_weights.softmax(-1)
        attention_weights = attention_weights.view(
            bs,
            num_query,
            self.num_heads,
            self.num_levels,
            self.num_points,
        )

        # bs, num_query, num_heads, num_levels, num_points, 2
        if reference_points.shape[-1] == 2:
            offset_normalizer = torch.stack([spatial_shapes[..., 1], spatial_shapes[..., 0]], -1)
            sampling_locations = (
                reference_points[:, :, None, :, None, :]
                + sampling_offsets / offset_normalizer[None, None, None, :, None, :]
            )
        elif reference_points.shape[-1] == 4:
            sampling_locations = (
                reference_points[:, :, None, :, None, :2]
                + sampling_offsets
                / self.num_points
                * reference_points[:, :, None, :, None, 2:]
                * 0.5
            )
        else:
            raise ValueError(
                "Last dim of reference_points must be 2 or 4, but get {} instead.".format(
                    reference_points.shape[-1]
                )
            )
    
        if torch.cuda.is_available() and value.is_cuda:
            halffloat = False
            if value.dtype == torch.float16:
                halffloat = True
                value = value.float()
                sampling_locations = sampling_locations.float()
                attention_weights = attention_weights.float()

            output = MultiScaleDeformableAttnFunction.apply(
                value,
                spatial_shapes,
                level_start_index,
                sampling_locations,
                attention_weights,
                self.im2col_step,
            )

            if halffloat:
                output = output.half()
        else:
            output = multi_scale_deformable_attn_pytorch(
                value, spatial_shapes, sampling_locations, attention_weights
            )

        output = self.output_proj(output)

        if not self.batch_first:
            output = output.permute(1, 0, 2)

        return output


def create_dummy_class(klass, dependency, message=""):
    """
    When a dependency of a class is not available, create a dummy class which throws ImportError
    when used.

    Args:
        klass (str): name of the class.
        dependency (str): name of the dependency.
        message: extra message to print
    Returns:
        class: a class object
    """
    err = "Cannot import '{}', therefore '{}' is not available.".format(dependency, klass)
    if message:
        err = err + " " + message

    class _DummyMetaClass(type):
        # throw error on class attribute access
        def __getattr__(_, __):  # noqa: B902
            raise ImportError(err)

    class _Dummy(object, metaclass=_DummyMetaClass):
        # throw error on constructor
        def __init__(self, *args, **kwargs):
            raise ImportError(err)

    return _Dummy


def create_dummy_func(func, dependency, message=""):
    """
    When a dependency of a function is not available, create a dummy function which throws
    ImportError when used.

    Args:
        func (str): name of the function.
        dependency (str or list[str]): name(s) of the dependency.
        message: extra message to print
    Returns:
        function: a function object
    """
    err = "Cannot import '{}', therefore '{}' is not available.".format(dependency, func)
    if message:
        err = err + " " + message

    if isinstance(dependency, (list, tuple)):
        dependency = ",".join(dependency)

    def _dummy(*args, **kwargs):
        raise ImportError(err)

    return _dummy