|
|
|
|
|
from __future__ import annotations |
|
|
|
import os |
|
import random |
|
|
|
import gradio as gr |
|
import numpy as np |
|
import PIL.Image |
|
import spaces |
|
import torch |
|
from diffusers import AutoencoderKL, DiffusionPipeline |
|
|
|
DESCRIPTION = "# SDXL" |
|
if not torch.cuda.is_available(): |
|
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>" |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1" |
|
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1824")) |
|
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1" |
|
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1" |
|
ENABLE_REFINER = os.getenv("ENABLE_REFINER", "1") == "1" |
|
ENABLE_USE_LORA = os.getenv("ENABLE_USE_LORA", "1") == "1" |
|
ENABLE_USE_VAE = os.getenv("ENABLE_USE_VAE", "1") == "1" |
|
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
models = ["runwayml/stable-diffusion-v1-5", |
|
"stabilityai/stable-diffusion-xl-base-1.0", |
|
"stablediffusionapi/juggernaut-xl-v8", |
|
"emilianJR/epiCRealism", |
|
"SG161222/Realistic_Vision_V5.1_noVAE", |
|
"cagliostrolab/animagine-xl-3.0", |
|
"misri/cyberrealistic_v41BackToBasics", |
|
"malcolmrey/serenity", |
|
"SG161222/RealVisXL_V3.0", |
|
"stablediffusionapi/realistic-stock-photo-v2", |
|
"stablediffusionapi/pixel-art-diffusion-xl", |
|
"playgroundai/playground-v2-1024px-aesthetic", |
|
"dataautogpt3/ProteusV0.3", |
|
"stablediffusionapi/disney-pixar-cartoon", |
|
"RunDiffusion/Juggernaut-XL-Lightning"] |
|
|
|
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
return seed |
|
|
|
|
|
@spaces.GPU |
|
def generate( |
|
prompt: str, |
|
negative_prompt: str = "", |
|
prompt_2: str = "", |
|
negative_prompt_2: str = "", |
|
use_negative_prompt: bool = False, |
|
use_prompt_2: bool = False, |
|
use_negative_prompt_2: bool = False, |
|
seed: int = 0, |
|
width: int = 1024, |
|
height: int = 1024, |
|
guidance_scale_base: float = 5.0, |
|
guidance_scale_refiner: float = 5.0, |
|
num_inference_steps_base: int = 25, |
|
num_inference_steps_refiner: int = 25, |
|
use_vae: bool = False, |
|
use_lora: bool = False, |
|
apply_refiner: bool = False, |
|
dropdown_model = 'cagliostrolab/animagine-xl-3.0', |
|
vaecall = 'stabilityai/sd-vae-ft-mse', |
|
lora = 'amazonaws-la/juliette', |
|
lora_scale: float = 0.7, |
|
) -> PIL.Image.Image: |
|
if torch.cuda.is_available(): |
|
|
|
if not use_vae: |
|
pipe = DiffusionPipeline.from_pretrained(dropdown_model, torch_dtype=torch.float16) |
|
|
|
if use_vae: |
|
vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16) |
|
pipe = DiffusionPipeline.from_pretrained(dropdown_model, vae=vae, torch_dtype=torch.float16) |
|
|
|
if use_lora: |
|
pipe.load_lora_weights(lora) |
|
pipe.fuse_lora(lora_scale=0.7) |
|
|
|
if ENABLE_CPU_OFFLOAD: |
|
pipe.enable_model_cpu_offload() |
|
|
|
else: |
|
pipe.to(device) |
|
|
|
if USE_TORCH_COMPILE: |
|
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) |
|
|
|
generator = torch.Generator().manual_seed(seed) |
|
|
|
if not use_negative_prompt: |
|
negative_prompt = None |
|
if not use_prompt_2: |
|
prompt_2 = None |
|
if not use_negative_prompt_2: |
|
negative_prompt_2 = None |
|
|
|
if not apply_refiner: |
|
return pipe( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
prompt_2=prompt_2, |
|
negative_prompt_2=negative_prompt_2, |
|
width=width, |
|
height=height, |
|
guidance_scale=guidance_scale_base, |
|
num_inference_steps=num_inference_steps_base, |
|
generator=generator, |
|
output_type="pil", |
|
).images[0] |
|
else: |
|
latents = pipe( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
prompt_2=prompt_2, |
|
negative_prompt_2=negative_prompt_2, |
|
width=width, |
|
height=height, |
|
guidance_scale=guidance_scale_base, |
|
num_inference_steps=num_inference_steps_base, |
|
generator=generator, |
|
output_type="latent", |
|
).images |
|
image = refiner( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
prompt_2=prompt_2, |
|
negative_prompt_2=negative_prompt_2, |
|
guidance_scale=guidance_scale_refiner, |
|
num_inference_steps=num_inference_steps_refiner, |
|
image=latents, |
|
generator=generator, |
|
).images[0] |
|
return image |
|
|
|
|
|
examples = [ |
|
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", |
|
"An astronaut riding a green horse", |
|
] |
|
|
|
with gr.Blocks(css="style.css") as demo: |
|
gr.Markdown(DESCRIPTION) |
|
gr.DuplicateButton( |
|
value="Duplicate Space for private use", |
|
elem_id="duplicate-button", |
|
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", |
|
) |
|
with gr.Group(): |
|
dropdown_model = gr.Dropdown(label='Model', value='cagliostrolab/animagine-xl-3.0', choices=models) |
|
vaecall = gr.Text(label='VAE') |
|
lora = gr.Text(label='LoRA') |
|
lora_scale = gr.Slider( |
|
label="Lora Scale", |
|
minimum=0.01, |
|
maximum=1, |
|
step=0.01, |
|
value=0.7, |
|
) |
|
with gr.Row(): |
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
container=False, |
|
) |
|
run_button = gr.Button("Run", scale=0) |
|
result = gr.Image(label="Result", show_label=False) |
|
with gr.Accordion("Advanced options", open=False): |
|
with gr.Row(): |
|
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False) |
|
use_prompt_2 = gr.Checkbox(label="Use prompt 2", value=False) |
|
use_negative_prompt_2 = gr.Checkbox(label="Use negative prompt 2", value=False) |
|
negative_prompt = gr.Text( |
|
label="Negative prompt", |
|
max_lines=1, |
|
placeholder="Enter a negative prompt", |
|
visible=False, |
|
) |
|
prompt_2 = gr.Text( |
|
label="Prompt 2", |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
visible=False, |
|
) |
|
negative_prompt_2 = gr.Text( |
|
label="Negative prompt 2", |
|
max_lines=1, |
|
placeholder="Enter a negative prompt", |
|
visible=False, |
|
) |
|
|
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
with gr.Row(): |
|
width = gr.Slider( |
|
label="Width", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
height = gr.Slider( |
|
label="Height", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
use_vae = gr.Checkbox(label='Use VAE', value=False, visible=ENABLE_USE_VAE) |
|
use_lora = gr.Checkbox(label='Use Lora', value=False, visible=ENABLE_USE_LORA) |
|
apply_refiner = gr.Checkbox(label="Apply refiner", value=False, visible=ENABLE_REFINER) |
|
with gr.Row(): |
|
guidance_scale_base = gr.Slider( |
|
label="Guidance scale for base", |
|
minimum=1, |
|
maximum=20, |
|
step=0.1, |
|
value=5.0, |
|
) |
|
num_inference_steps_base = gr.Slider( |
|
label="Number of inference steps for base", |
|
minimum=10, |
|
maximum=100, |
|
step=1, |
|
value=25, |
|
) |
|
with gr.Row(visible=False) as refiner_params: |
|
guidance_scale_refiner = gr.Slider( |
|
label="Guidance scale for refiner", |
|
minimum=1, |
|
maximum=20, |
|
step=0.1, |
|
value=5.0, |
|
) |
|
num_inference_steps_refiner = gr.Slider( |
|
label="Number of inference steps for refiner", |
|
minimum=10, |
|
maximum=100, |
|
step=1, |
|
value=25, |
|
) |
|
|
|
gr.Examples( |
|
examples=examples, |
|
inputs=prompt, |
|
outputs=result, |
|
fn=generate, |
|
cache_examples=CACHE_EXAMPLES, |
|
) |
|
|
|
use_negative_prompt.change( |
|
fn=lambda x: gr.update(visible=x), |
|
inputs=use_negative_prompt, |
|
outputs=negative_prompt, |
|
queue=False, |
|
api_name=False, |
|
) |
|
use_prompt_2.change( |
|
fn=lambda x: gr.update(visible=x), |
|
inputs=use_prompt_2, |
|
outputs=prompt_2, |
|
queue=False, |
|
api_name=False, |
|
) |
|
use_negative_prompt_2.change( |
|
fn=lambda x: gr.update(visible=x), |
|
inputs=use_negative_prompt_2, |
|
outputs=negative_prompt_2, |
|
queue=False, |
|
api_name=False, |
|
) |
|
use_vae.change( |
|
fn=lambda x: gr.update(visible=x), |
|
inputs=use_vae, |
|
outputs=vaecall, |
|
queue=False, |
|
api_name=False, |
|
) |
|
use_lora.change( |
|
fn=lambda x: gr.update(visible=x), |
|
inputs=use_lora, |
|
outputs=lora, |
|
queue=False, |
|
api_name=False, |
|
) |
|
apply_refiner.change( |
|
fn=lambda x: gr.update(visible=x), |
|
inputs=apply_refiner, |
|
outputs=refiner_params, |
|
queue=False, |
|
api_name=False, |
|
) |
|
|
|
gr.on( |
|
triggers=[ |
|
prompt.submit, |
|
negative_prompt.submit, |
|
prompt_2.submit, |
|
negative_prompt_2.submit, |
|
run_button.click, |
|
], |
|
fn=randomize_seed_fn, |
|
inputs=[seed, randomize_seed], |
|
outputs=seed, |
|
queue=False, |
|
api_name=False, |
|
).then( |
|
fn=generate, |
|
inputs=[ |
|
prompt, |
|
negative_prompt, |
|
prompt_2, |
|
negative_prompt_2, |
|
use_negative_prompt, |
|
use_prompt_2, |
|
use_negative_prompt_2, |
|
seed, |
|
width, |
|
height, |
|
guidance_scale_base, |
|
guidance_scale_refiner, |
|
num_inference_steps_base, |
|
num_inference_steps_refiner, |
|
use_vae, |
|
use_lora, |
|
apply_refiner, |
|
dropdown_model, |
|
vaecall, |
|
lora, |
|
lora_scale, |
|
], |
|
outputs=result, |
|
api_name="run", |
|
) |
|
|
|
|
|
css = """ |
|
|
|
.svelte-vt1mxs.gap { |
|
border-radius: 20px; |
|
} |
|
|
|
div#component-6 {padding: 26px;} |
|
|
|
button#generate { |
|
background: radial-gradient(#ff7300, #ffffff9e); |
|
border-radius: 40px; |
|
padding: 16px; |
|
color: #FFF; |
|
FONT-SIZE: large; |
|
border: 2px solid #ffffff2e; |
|
border-top: 0px solid; |
|
box-shadow: 0px 18px 10px -10px #ff5400; |
|
backdrop-filter: blur(12px); |
|
} |
|
|
|
.wrap.default.full.svelte-zlszon { |
|
background: url(https://vivawaves.com/spaces.gif) center center no-repeat; |
|
background-color: black; |
|
} |
|
|
|
|
|
.eta-bar.svelte-zlszon.svelte-zlszon { |
|
background: #484848; |
|
} |
|
|
|
""" |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=20).launch() |