from transformers import T5ForConditionalGeneration, T5Tokenizer import streamlit as st from PIL import Image import os @st.cache(allow_output_mutation=True) def load_model_cache(): auth_token = os.environ.get("TOKEN_FROM_SECRET") or True tokenizer_en = T5Tokenizer.from_pretrained( "Voicelab/vlt5-base-keywords-v4_3-en", use_auth_token=auth_token ) model_en = T5ForConditionalGeneration.from_pretrained( "Voicelab/vlt5-base-keywords-v4_3-en", use_auth_token=auth_token ) tokenizer_pl = T5Tokenizer.from_pretrained( "Voicelab/vlt5-base-keywords-v4_3", use_auth_token=auth_token ) model_pl = T5ForConditionalGeneration.from_pretrained( "Voicelab/vlt5-base-keywords-v4_3", use_auth_token=auth_token ) return tokenizer_en, model_en, tokenizer_pl, model_pl img_full = Image.open("images/vl-logo-nlp-blue.png") img_short = Image.open("images/sVL-NLP-short.png") img_favicon = Image.open("images/favicon_vl.png") max_length: int = 1000 cache_size: int = 100 st.set_page_config( page_title="DEMO - keywords generation", page_icon=img_favicon, initial_sidebar_state="expanded", ) tokenizer_en, model_en, tokenizer_pl, model_pl = load_model_cache() def get_predictions(text, language): if language == "Polish": input_ids = tokenizer_pl(text, return_tensors="pt", truncation=True).input_ids output = model_pl.generate( input_ids, no_repeat_ngram_size=2, num_beams=3, num_beam_groups=3, repetition_penalty=1.5, diversity_penalty=2.0, length_penalty=2.0, ) predicted_kw = tokenizer_pl.decode(output[0], skip_special_tokens=True) elif language == "English": input_ids = tokenizer_en(text, return_tensors="pt", truncation=True).input_ids output = model_en.generate( input_ids, no_repeat_ngram_size=2, num_beams=3, num_beam_groups=3, repetition_penalty=1.5, diversity_penalty=2.0, length_penalty=2.0, ) predicted_kw = tokenizer_en.decode(output[0], skip_special_tokens=True) return predicted_kw def trim_length(): if len(st.session_state["input"]) > max_length: st.session_state["input"] = st.session_state["input"][:max_length] if __name__ == "__main__": st.sidebar.image(img_short) st.image(img_full) st.title("VLT5 - keywords generation") st.markdown("**Input**: Use abstract lentgh-like text for best results. Providing very short or very long texts will result in significantly worse results.") generated_keywords = "" user_input = st.text_area( label=f"Input text (max {max_length} characters)", value="", height=300, on_change=trim_length, key="input", ) language = st.sidebar.title("Model settings") language = st.sidebar.radio( "Select model to test", [ "Polish", "English", ], ) result = st.button("Generate keywords") if result: generated_keywords = get_predictions(text=user_input, language=language) st.text_area("Generated keywords", generated_keywords) print(f"Input: {user_input}---> Keywords: {generated_keywords}")