|
from langchain_openai import ChatOpenAI |
|
from langchain_core.prompts import ChatPromptTemplate |
|
from langchain_core.output_parsers import StrOutputParser |
|
from langchain_community.llms import Ollama |
|
import streamlit as st |
|
import os |
|
from dotenv import load_dotenv |
|
|
|
|
|
load_dotenv() |
|
|
|
os.environ["LANGCHAIN_TRACING_V2"] = "true" |
|
os.environ["LANGCHAIN_API_KEY"] = os.getenv("LANGCHAIN_API_KEY") |
|
|
|
|
|
prompt = ChatPromptTemplate.from_messages( |
|
[ |
|
("system", "You are a helpful assistant. Please respond to the user queries"), |
|
("user", "Question: {question}") |
|
] |
|
) |
|
|
|
|
|
st.title('Langchain Demo With LLAMA2 API') |
|
input_text = st.text_input("Search the topic you want") |
|
|
|
|
|
llm = Ollama(model="llama2") |
|
output_parser = StrOutputParser() |
|
chain = prompt | llm | output_parser |
|
|
|
|
|
if input_text: |
|
response = chain.invoke({"question": input_text}) |
|
st.write(response) |
|
|