Spaces:
No application file
No application file
from configs.model_config import * | |
from chains.local_doc_qa import LocalDocQA | |
import os | |
import nltk | |
from models.loader.args import parser | |
import models.shared as shared | |
from models.loader import LoaderCheckPoint | |
nltk.data.path = [NLTK_DATA_PATH] + nltk.data.path | |
# Show reply with source text from input document | |
REPLY_WITH_SOURCE = True | |
def main(): | |
llm_model_ins = shared.loaderLLM() | |
llm_model_ins.history_len = LLM_HISTORY_LEN | |
local_doc_qa = LocalDocQA() | |
local_doc_qa.init_cfg(llm_model=llm_model_ins, | |
embedding_model=EMBEDDING_MODEL, | |
embedding_device=EMBEDDING_DEVICE, | |
top_k=VECTOR_SEARCH_TOP_K) | |
vs_path = None | |
while not vs_path: | |
filepath = input("Input your local knowledge file path 请输入本地知识文件路径:") | |
# 判断 filepath 是否为空,如果为空的话,重新让用户输入,防止用户误触回车 | |
if not filepath: | |
continue | |
vs_path, _ = local_doc_qa.init_knowledge_vector_store(filepath) | |
history = [] | |
while True: | |
query = input("Input your question 请输入问题:") | |
last_print_len = 0 | |
for resp, history in local_doc_qa.get_knowledge_based_answer(query=query, | |
vs_path=vs_path, | |
chat_history=history, | |
streaming=STREAMING): | |
if STREAMING: | |
print(resp["result"][last_print_len:], end="", flush=True) | |
last_print_len = len(resp["result"]) | |
else: | |
print(resp["result"]) | |
if REPLY_WITH_SOURCE: | |
source_text = [f"""出处 [{inum + 1}] {os.path.split(doc.metadata['source'])[-1]}:\n\n{doc.page_content}\n\n""" | |
# f"""相关度:{doc.metadata['score']}\n\n""" | |
for inum, doc in | |
enumerate(resp["source_documents"])] | |
print("\n\n" + "\n\n".join(source_text)) | |
if __name__ == "__main__": | |
# # 通过cli.py调用cli_demo时需要在cli.py里初始化模型,否则会报错: | |
# langchain-ChatGLM: error: unrecognized arguments: start cli | |
# 为此需要先将 | |
# args = None | |
# args = parser.parse_args() | |
# args_dict = vars(args) | |
# shared.loaderCheckPoint = LoaderCheckPoint(args_dict) | |
# 语句从main函数里取出放到函数外部 | |
# 然后在cli.py里初始化 | |
args = None | |
args = parser.parse_args() | |
args_dict = vars(args) | |
shared.loaderCheckPoint = LoaderCheckPoint(args_dict) | |
main() | |