import torch import numpy as np from tqdm import tqdm from model.DiffSynthSampler import DiffSynthSampler import soundfile as sf # import pyrubberband as pyrb from tqdm import tqdm from model.VQGAN import get_VQGAN from model.diffusion import get_diffusion_model from transformers import AutoTokenizer, ClapModel from model.diffusion_components import linear_beta_schedule from model.timbre_encoder_pretrain import get_timbre_encoder from model.multimodal_model import get_multi_modal_model import gradio as gr from webUI.natural_language_guided.gradio_webUI import GradioWebUI from webUI.natural_language_guided.text2sound import get_text2sound_module from webUI.natural_language_guided.sound2sound_with_text import get_sound2sound_with_text_module from webUI.natural_language_guided.inpaint_with_text import get_inpaint_with_text_module # from webUI.natural_language_guided.build_instrument import get_build_instrument_module from webUI.natural_language_guided.README import get_readme_module device = "cuda" if torch.cuda.is_available() else "cpu" use_pretrained_CLAP = False # load VQ-GAN VAE_model_name = "24_1_2024-52_4x_L_D" modelConfig = {"in_channels": 3, "hidden_channels": [80, 160], "embedding_dim": 4, "out_channels": 3, "block_depth": 2, "attn_pos": [80, 160], "attn_with_skip": True, "num_embeddings": 8192, "commitment_cost": 0.25, "decay": 0.99, "norm_type": "groupnorm", "act_type": "swish", "num_groups": 16} VAE = get_VQGAN(modelConfig, load_pretrain=True, model_name=VAE_model_name, device=device) # load U-Net UNet_model_name = "history/28_1_2024_CLAP_STFT_180000" if use_pretrained_CLAP else "history/28_1_2024_TE_STFT_300000" unetConfig = {"in_dim": 4, "down_dims": [96, 96, 192, 384], "up_dims": [384, 384, 192, 96], "attn_type": "linear_add", "condition_type": "natural_language_prompt", "label_emb_dim": 512} uNet = get_diffusion_model(unetConfig, load_pretrain=True, model_name=UNet_model_name, device=device) # load LM CLAP_temp = ClapModel.from_pretrained("laion/clap-htsat-unfused") # 153,492,890 CLAP_tokenizer = AutoTokenizer.from_pretrained("laion/clap-htsat-unfused") timbre_encoder_name = "24_1_2024_STFT" timbre_encoder_Config = {"input_dim": 512, "feature_dim": 512, "hidden_dim": 1024, "num_instrument_classes": 1006, "num_instrument_family_classes": 11, "num_velocity_classes": 128, "num_qualities": 10, "num_layers": 3} timbre_encoder = get_timbre_encoder(timbre_encoder_Config, load_pretrain=True, model_name=timbre_encoder_name, device=device) if use_pretrained_CLAP: text_encoder = CLAP_temp else: multimodalmodel_name = "24_1_2024" multimodalmodel_config = {"text_feature_dim": 512, "spectrogram_feature_dim": 1024, "multi_modal_emb_dim": 512, "num_projection_layers": 2, "temperature": 1.0, "dropout": 0.1, "freeze_text_encoder": False, "freeze_spectrogram_encoder": False} mmm = get_multi_modal_model(timbre_encoder, CLAP_temp, multimodalmodel_config, load_pretrain=True, model_name=multimodalmodel_name, device=device) text_encoder = mmm.to("cpu") gradioWebUI = GradioWebUI(device, VAE, uNet, text_encoder, CLAP_tokenizer, freq_resolution=512, time_resolution=256, channels=4, timesteps=1000, squared=False, VAE_scale=4, flexible_duration=True, noise_strategy="repeat", GAN_generator=None) with gr.Blocks(theme=gr.themes.Soft(), mode="dark") as demo: # with gr.Blocks(theme='WeixuanYuan/Soft_dark', mode="dark") as demo: # gr.Markdown("DiffuSynth v0.2") gr.Markdown('Thank you for using DiffuSynth v0.2! \n The music track synthesis feature is up coming very soon!', unsafe_allow_html=True) reconstruction_state = gr.State(value={}) text2sound_state = gr.State(value={}) sound2sound_state = gr.State(value={}) inpaint_state = gr.State(value={}) super_resolution_state = gr.State(value={}) virtual_instruments_state = gr.State(value={"virtual_instruments": {}}) get_text2sound_module(gradioWebUI, text2sound_state, virtual_instruments_state) get_sound2sound_with_text_module(gradioWebUI, sound2sound_state, virtual_instruments_state) get_inpaint_with_text_module(gradioWebUI, inpaint_state, virtual_instruments_state) # get_build_instrument_module(gradioWebUI, virtual_instruments_state) # get_readme_module() demo.launch(debug=True, share=True)