File size: 11,746 Bytes
2430bc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
import copy
import os
import random
import sys

import gradio as gr
import librosa
import numpy as np
import soundfile as sf
import torch
import torch.nn.functional as F
from accelerate import infer_auto_device_map
from datasets import Audio
from models.salmonn import SALMONN
from safetensors.torch import load, load_model
from tinydb import TinyDB
from torch import nn
from transformers import (
    AutoModelForCausalLM,
    AutoProcessor,
    AutoModel,
    AutoTokenizer,
    LlamaForCausalLM,
    TextIteratorStreamer,
    WhisperForConditionalGeneration,
)
from transformers.generation import GenerationConfig

tokenizer = AutoTokenizer.from_pretrained("WillHeld/via-llama")
prefix = torch.tensor([128000, 128006, 882, 128007, 271]).to("cuda:0")
pre_user_suffix = torch.tensor([271]).to("cuda:0")
final_header = torch.tensor([128009, 128006, 78191, 128007, 271]).to("cuda:0")
cache = None
anonymous = False

resampler = Audio(sampling_rate=16_000)


qwen_tokenizer = AutoTokenizer.from_pretrained(
    "Qwen/Qwen-Audio-Chat", trust_remote_code=True
)
qwen_model = AutoModelForCausalLM.from_pretrained(
    "Qwen/Qwen-Audio-Chat",
    device_map="auto",
    trust_remote_code=True,
    torch_dtype=torch.float16,
).eval()

qwen_model.generation_config = GenerationConfig.from_pretrained(
    "Qwen/Qwen-Audio-Chat",
    trust_remote_code=True,
    do_sample=False,
    top_k=50,
    top_p=1.0,
)


salmonn_model = SALMONN(
    ckpt="./SALMONN_PATHS/salmonn_v1.pth",
    whisper_path="./SALMONN_PATHS/whisper-large-v2",
    beats_path="./SALMONN_PATHS/BEATs_iter3_plus_AS2M_finetuned_on_AS2M_cpt2.pt",
    vicuna_path="./SALMONN_PATHS/vicuna-13b-v1.1",
    low_resource=False,
    device="cuda:0",
)
salmonn_tokenizer = salmonn_model.llama_tokenizer


diva = AutoModel.from_pretrained("WillHeld/DiVA-llama-3-v0-8b", trust_remote_code=True)


@torch.no_grad
def salmonn_fwd(audio_input, prompt, do_sample=False, temperature=0.001):
    if audio_input == None:
        return ""
    sr, y = audio_input
    y = y.astype(np.float32)
    y /= np.max(np.abs(y))
    a = resampler.decode_example(
        resampler.encode_example({"array": y, "sampling_rate": sr})
    )
    sf.write("tmp.wav", a["array"], a["sampling_rate"], format="wav")
    streamer = TextIteratorStreamer(salmonn_tokenizer)
    with torch.cuda.amp.autocast(dtype=torch.float16):
        llm_message = salmonn_model.generate(
            wav_path="tmp.wav",
            prompt=prompt,
            do_sample=False,
            top_p=1.0,
            temperature=0.0,
            device="cuda:0",
            streamer=streamer,
        )

    response = ""
    for new_tokens in streamer:
        response += new_tokens
        yield response.replace("</s>", "")


@torch.no_grad
def qwen_audio(audio_input, prompt, do_sample=False, temperature=0.001):
    if audio_input == None:
        return ""
    sr, y = audio_input
    y = y.astype(np.float32)
    y /= np.max(np.abs(y))
    a = resampler.decode_example(
        resampler.encode_example({"array": y, "sampling_rate": sr})
    )
    sf.write("tmp.wav", a["array"], a["sampling_rate"], format="wav")
    query = qwen_tokenizer.from_list_format([{"audio": "tmp.wav"}, {"text": prompt}])

    response, history = qwen_model.chat(
        qwen_tokenizer,
        query=query,
        system="You are a helpful assistant.",
        history=None,
    )
    return response


@torch.no_grad
def via(audio_input, prompt, do_sample=False, temperature=0.001):
    if audio_input == None:
        return ""
    sr, y = audio_input
    y = y.astype(np.float32)
    y /= np.max(np.abs(y))
    a = resampler.decode_example(
        resampler.encode_example({"array": y, "sampling_rate": sr})
    )

    audio = a["array"]

    yield from diva.generate_stream(audio, prompt)


def transcribe(audio_input, text_prompt, state, model_order):
    yield (
        gr.Button(
            value="Waiting in queue for GPU time...",
            interactive=False,
            variant="primary",
        ),
        "",
        "",
        "",
        gr.Button(visible=False),
        gr.Button(visible=False),
        gr.Button(visible=False),
        state,
    )
    if audio_input == None:
        return (
            "",
            "",
            "",
            gr.Button(visible=False),
            gr.Button(visible=False),
            gr.Button(visible=False),
            state,
        )

    def gen_from_via():
        via_resp = via(audio_input, text_prompt)
        for resp in via_resp:
            v_resp = gr.Textbox(
                value=resp,
                visible=True,
                label=model_names[0] if not anonymous else f"Model {order}",
            )
            yield (v_resp, s_resp, q_resp)

    def gen_from_salmonn():
        salmonn_resp = salmonn_fwd(audio_input, text_prompt)
        for resp in salmonn_resp:
            s_resp = gr.Textbox(
                value=resp,
                visible=True,
                label=model_names[1] if not anonymous else f"Model {order}",
            )
            yield (v_resp, s_resp, q_resp)

    def gen_from_qwen():
        qwen_resp = qwen_audio(audio_input, text_prompt)
        q_resp = gr.Textbox(
            value=qwen_resp,
            visible=True,
            label=model_names[2] if not anonymous else f"Model {order}",
        )
        yield (v_resp, s_resp, q_resp)

    spinner_id = 0
    spinners = ["◐ ", "β—“ ", "β—‘", "β—’"]
    initial_responses = [("", "", "")]
    resp_generators = [
        gen_from_via(),
        gen_from_salmonn(),
        gen_from_qwen(),
    ]
    order = -1
    resp_generators = [
        resp_generators[model_order[0]],
        resp_generators[model_order[1]],
        resp_generators[model_order[2]],
    ]
    for generator in [initial_responses, *resp_generators]:
        order += 1
        for resps in generator:
            v_resp, s_resp, q_resp = resps
            resp_1 = resps[model_order[0]]
            resp_2 = resps[model_order[1]]
            resp_3 = resps[model_order[2]]
            spinner = spinners[spinner_id]
            spinner_id = (spinner_id + 1) % 4
            yield (
                gr.Button(
                    value=spinner + " Generating Responses " + spinner,
                    interactive=False,
                    variant="primary",
                ),
                resp_1,
                resp_2,
                resp_3,
                gr.Button(visible=False),
                gr.Button(visible=False),
                gr.Button(visible=False),
                state,
            )
    yield (
        gr.Button(
            value="Click to compare models!", interactive=True, variant="primary"
        ),
        resp_1,
        resp_2,
        resp_3,
        gr.Button(visible=True),
        gr.Button(visible=True),
        gr.Button(visible=True),
        responses_complete(state),
    )


def on_page_load(state, model_order):
    if state == 0:
        gr.Info(
            "Record what you want to say to your AI Assistant! All Audio recordings are stored only temporarily and will be erased as soon as you exit this page."
        )
        state = 1
        if anonymous:
            random.shuffle(model_order)
    return state, model_order


def recording_complete(state):
    if state == 1:
        gr.Info(
            "Submit your recording to get responses from all three models! You can also influence the model responses with an optional prompt."
        )
        state = 2
    return (
        gr.Button(
            value="Click to compare models!", interactive=True, variant="primary"
        ),
        state,
    )


def responses_complete(state):
    if state == 2:
        gr.Info(
            "Give us your feedback! Mark which model gave you the best response so we can understand the quality of these different voice assistant models."
        )
        state = 3
    return state


def clear_factory(button_id):
    def clear(audio_input, text_prompt, model_order):
        if button_id != None:
            sr, y = audio_input
            db.insert(
                {
                    "audio_hash": hash(str(y)),
                    "text_prompt": text_prompt,
                    "best": model_shorthand[model_order[button_id]],
                }
            )
        if anonymous:
            random.shuffle(model_order)
        return (
            model_order,
            gr.Button(
                value="Record Audio to Submit!",
                interactive=False,
            ),
            gr.Button(visible=False),
            gr.Button(visible=False),
            gr.Button(visible=False),
            None,
            gr.Textbox(visible=False),
            gr.Textbox(visible=False),
            gr.Textbox(visible=False),
        )

    return clear


theme = gr.themes.Soft(
    primary_hue=gr.themes.Color(
        c100="#82000019",
        c200="#82000033",
        c300="#8200004c",
        c400="#82000066",
        c50="#8200007f",
        c500="#8200007f",
        c600="#82000099",
        c700="#820000b2",
        c800="#820000cc",
        c900="#820000e5",
        c950="#820000f2",
    ),
    secondary_hue="rose",
    neutral_hue="stone",
)

db = TinyDB("user_study.json")

model_names = ["Llama 3 DiVA", "SALMONN", "Qwen Audio"]
model_shorthand = ["via", "salmonn", "qwen"]
with gr.Blocks(theme=theme) as demo:
    state = gr.State(0)
    model_order = gr.State([0, 1, 2])
    with gr.Row():
        audio_input = gr.Audio(
            sources=["microphone"], streaming=False, label="Audio Input"
        )
    with gr.Row():
        prompt = gr.Textbox(
            value="",
            label="Text Prompt",
            placeholder="Optional: Additional text prompt to influence how the model responds to your speech. e.g. 'Respond in a Haiku style.'",
        )

    with gr.Row():
        btn = gr.Button(value="Record Audio to Submit!", interactive=False)

    with gr.Row():
        with gr.Column(scale=1):
            out1 = gr.Textbox(visible=False)
            best1 = gr.Button(value="This response is best", visible=False)
        with gr.Column(scale=1):
            out2 = gr.Textbox(visible=False)
            best2 = gr.Button(value="This response is best", visible=False)
        with gr.Column(scale=1):
            out3 = gr.Textbox(visible=False)
            best3 = gr.Button(value="This response is best", visible=False)

    audio_input.stop_recording(
        recording_complete,
        [state],
        [btn, state],
    )
    audio_input.start_recording(
        lambda: gr.Button(
            value="Uploading Audio to Cloud", interactive=False, variant="primary"
        ),
        None,
        btn,
    )
    btn.click(
        fn=transcribe,
        inputs=[audio_input, prompt, state, model_order],
        outputs=[btn, out1, out2, out3, best1, best2, best3, state],
    )
    best1.click(
        fn=clear_factory(0),
        inputs=[audio_input, prompt, model_order],
        outputs=[model_order, btn, best1, best2, best3, audio_input, out1, out2, out3],
    )
    best2.click(
        fn=clear_factory(1),
        inputs=[audio_input, prompt, model_order],
        outputs=[model_order, btn, best1, best2, best3, audio_input, out1, out2, out3],
    )
    best3.click(
        fn=clear_factory(2),
        inputs=[audio_input, prompt, model_order],
        outputs=[model_order, btn, best1, best2, best3, audio_input, out1, out2, out3],
    )
    audio_input.clear(
        clear_factory(None),
        [audio_input, prompt, model_order],
        [model_order, btn, best1, best2, best3, audio_input, out1, out2, out3],
    )
    demo.load(
        fn=on_page_load, inputs=[state, model_order], outputs=[state, model_order]
    )

demo.launch(share=True)