diva-audio / app.py
WillHeld's picture
Just DiVA
a5c279e
raw
history blame
5.18 kB
import copy
import os
import random
import sys
import xxhash
import gradio as gr
import librosa
import numpy as np
import soundfile as sf
import torch
import torch.nn.functional as F
from accelerate import infer_auto_device_map
from datasets import Audio
from models.salmonn import SALMONN
from safetensors.torch import load, load_model
import spaces
from torch import nn
from transformers import (
AutoModelForCausalLM,
AutoProcessor,
AutoTokenizer,
LlamaForCausalLM,
TextIteratorStreamer,
WhisperForConditionalGeneration,
AutoProcessor,
AutoModel
)
from transformers.generation import GenerationConfig
anonymous = False
diva_model = AutoModel.from_pretrained("WillHeld/DiVA-llama-3-v0-8b", trust_remote_code=True)
resampler = Audio(sampling_rate=16_000)
@spaces.GPU
@torch.no_grad
def diva_audio(audio_input, do_sample=False, temperature=0.001):
sr, y = audio_input
x = xxhash.xxh32(bytes(y)).hexdigest()
y = y.astype(np.float32)
y /= np.max(np.abs(y))
a = resampler.decode_example(
resampler.encode_example({"array": y, "sampling_rate": sr})
)
yield from diva_model.generate_stream(a["array"], None, do_sample=do_sample, max_new_tokens = 256)
@spaces.GPU
def transcribe(audio_input, state, model_order):
if audio_input == None:
return (
"",
state,
)
def gen_from_diva():
diva_resp = diva_audio(audio_input)
for resp in diva_resp:
d_resp = gr.Textbox(
value=resp,
visible=True,
label=model_names[0] if not anonymous else f"Model {order}",
)
yield (d_resp)
spinner_id = 0
spinners = ["◐ ", "β—“ ", "β—‘", "β—’"]
initial_responses = [("")]
resp_generators = [
gen_from_diva(),
]
order = -1
resp_generators = [resp_generators[model_order[0]]]
for generator in [initial_responses, *resp_generators]:
order += 1
for resps in generator:
s_resp, q_resp = resps
resp_1 = resps[model_order[0]]
spinner = spinners[spinner_id]
spinner_id = (spinner_id + 1) % 4
yield (
gr.Button(
value=spinner + " Generating Responses " + spinner,
interactive=False,
variant="primary",
),
resp_1,
state,
)
yield (
gr.Button(
value="Click to compare models!", interactive=True, variant="primary"
),
resp_1,
resp_2,
responses_complete(state),
)
def on_page_load(state, model_order):
if state == 0:
gr.Info(
"Record something you'd say to an AI Assistant! Think about what you usually use Siri, Google Assistant, or ChatGPT for."
)
state = 1
if anonymous:
random.shuffle(model_order)
return state, model_order
def recording_complete(state):
if state == 1:
gr.Info(
"Once you submit your recording, DiVA will stream back a response! This might take a second."
)
state = 2
return (
gr.Button(
value="Click to run inference!", interactive=True, variant="primary"
),
state,
)
def clear_factory(button_id):
def clear(audio_input, model_order):
return (
model_order,
gr.Button(
value="Record Audio to Submit!",
interactive=False,
),
None,
None
)
return clear
theme = gr.themes.Soft(
primary_hue=gr.themes.Color(
c100="#82000019",
c200="#82000033",
c300="#8200004c",
c400="#82000066",
c50="#8200007f",
c500="#8200007f",
c600="#82000099",
c700="#820000b2",
c800="#820000cc",
c900="#820000e5",
c950="#820000f2",
),
secondary_hue="rose",
neutral_hue="stone",
)
model_names = ["DiVA Llama 3 8B"]
model_shorthand = ["diva"]
with gr.Blocks(theme=theme) as demo:
state = gr.State(0)
model_order = gr.State([0, 1])
with gr.Row():
audio_input = gr.Audio(
sources=["microphone"], streaming=False, label="Audio Input"
)
with gr.Row():
btn = gr.Button(value="Record Audio to Submit!", interactive=False)
with gr.Row():
out1 = gr.Textbox(visible=False)
audio_input.stop_recording(
recording_complete,
[state],
[btn, state],
)
audio_input.start_recording(
lambda: gr.Button(
value="Uploading Audio to Cloud", interactive=False, variant="primary"
),
None,
btn,
)
btn.click(
fn=transcribe,
inputs=[audio_input, state, model_order],
outputs=[btn, out1, state],
)
audio_input.clear(
clear_factory(None),
[audio_input, model_order],
[model_order, btn, audio_input, out1],
)
demo.load(
fn=on_page_load, inputs=[state, model_order], outputs=[state, model_order]
)
demo.launch(share=True)