Spaces:
Running
on
Zero
Running
on
Zero
Remove SALMONN
Browse files- .gitignore +2 -0
- SALMONN_PATHS/BEATs_iter3_plus_AS2M_finetuned_on_AS2M_cpt2.pt +0 -3
- SALMONN_PATHS/SALMONN_SETUP.sh +0 -7
- SALMONN_PATHS/salmonn_v1.pth +0 -3
- SALMONN_PATHS/vicuna-13b-v1.1/.gitattributes +0 -34
- SALMONN_PATHS/vicuna-13b-v1.1/README.md +0 -53
- SALMONN_PATHS/vicuna-13b-v1.1/config.json +0 -23
- SALMONN_PATHS/vicuna-13b-v1.1/generation_config.json +0 -7
- SALMONN_PATHS/vicuna-13b-v1.1/pytorch_model-00001-of-00003.bin +0 -3
- SALMONN_PATHS/vicuna-13b-v1.1/pytorch_model-00002-of-00003.bin +0 -3
- SALMONN_PATHS/vicuna-13b-v1.1/pytorch_model-00003-of-00003.bin +0 -3
- SALMONN_PATHS/vicuna-13b-v1.1/pytorch_model.bin.index.json +0 -410
- SALMONN_PATHS/vicuna-13b-v1.1/special_tokens_map.json +0 -23
- SALMONN_PATHS/vicuna-13b-v1.1/tokenizer.model +0 -3
- SALMONN_PATHS/vicuna-13b-v1.1/tokenizer_config.json +0 -33
- SALMONN_PATHS/whisper-large-v2/.gitattributes +0 -34
- SALMONN_PATHS/whisper-large-v2/README.md +0 -395
- SALMONN_PATHS/whisper-large-v2/added_tokens.json +0 -1609
- SALMONN_PATHS/whisper-large-v2/config.json +0 -144
- SALMONN_PATHS/whisper-large-v2/flax_model.msgpack +0 -3
- SALMONN_PATHS/whisper-large-v2/generation_config.json +0 -316
- SALMONN_PATHS/whisper-large-v2/merges.txt +0 -0
- SALMONN_PATHS/whisper-large-v2/model.safetensors +0 -3
- SALMONN_PATHS/whisper-large-v2/normalizer.json +0 -1742
- SALMONN_PATHS/whisper-large-v2/preprocessor_config.json +0 -0
- SALMONN_PATHS/whisper-large-v2/pytorch_model.bin +0 -3
- SALMONN_PATHS/whisper-large-v2/special_tokens_map.json +0 -139
- SALMONN_PATHS/whisper-large-v2/tf_model.h5 +0 -3
- SALMONN_PATHS/whisper-large-v2/tokenizer.json +0 -0
- SALMONN_PATHS/whisper-large-v2/tokenizer_config.json +0 -0
- SALMONN_PATHS/whisper-large-v2/vocab.json +0 -0
- app.py +54 -46
- models/salmonn.py +4 -4
- requirements.txt +4 -3
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
*__pycache__*
|
2 |
+
user_study.json
|
SALMONN_PATHS/BEATs_iter3_plus_AS2M_finetuned_on_AS2M_cpt2.pt
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:e5815275a04b6885e7b8af63d120b29bffae2cd2225cf4915e1ec6d819d3022c
|
3 |
-
size 363145291
|
|
|
|
|
|
|
|
SALMONN_PATHS/SALMONN_SETUP.sh
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
git clone https://huggingface.co/tsinghua-ee/SALMONN/
|
2 |
-
mv SALMONN/salmonn_v1.pth .
|
3 |
-
rm -r SALMONN
|
4 |
-
git clone https://huggingface.co/lmsys/vicuna-13b-v1.1
|
5 |
-
git clone https://huggingface.co/openai/whisper-large-v2
|
6 |
-
wget https://huggingface.co/spaces/fffiloni/SALMONN-7B-gradio/resolve/677c0125de736ab92751385e1e8664cd03c2ce0d/beats/BEATs_iter3_plus_AS2M_finetuned_on_AS2M_cpt2.pt?download=true
|
7 |
-
mv BEATs_iter3_plus_AS2M_finetuned_on_AS2M_cpt2.pt?download=true BEATs_iter3_plus_AS2M_finetuned_on_AS2M_cpt2.pt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SALMONN_PATHS/salmonn_v1.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:709c665b25ef05b48985584ec31d6f15018b754abf47b9c33ed9a278285bbae0
|
3 |
-
size 400466533
|
|
|
|
|
|
|
|
SALMONN_PATHS/vicuna-13b-v1.1/.gitattributes
DELETED
@@ -1,34 +0,0 @@
|
|
1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SALMONN_PATHS/vicuna-13b-v1.1/README.md
DELETED
@@ -1,53 +0,0 @@
|
|
1 |
-
---
|
2 |
-
inference: false
|
3 |
-
---
|
4 |
-
|
5 |
-
**NOTE: New version available**
|
6 |
-
Please check out a newer version of the weights [here](https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md).
|
7 |
-
|
8 |
-
<br>
|
9 |
-
|
10 |
-
# Vicuna Model Card
|
11 |
-
|
12 |
-
## Model Details
|
13 |
-
|
14 |
-
Vicuna is a chat assistant trained by fine-tuning LLaMA on user-shared conversations collected from ShareGPT.
|
15 |
-
|
16 |
-
- **Developed by:** [LMSYS](https://lmsys.org/)
|
17 |
-
- **Model type:** An auto-regressive language model based on the transformer architecture.
|
18 |
-
- **License:** Non-commercial license
|
19 |
-
- **Finetuned from model:** [LLaMA](https://arxiv.org/abs/2302.13971).
|
20 |
-
|
21 |
-
### Model Sources
|
22 |
-
|
23 |
-
- **Repository:** https://github.com/lm-sys/FastChat
|
24 |
-
- **Blog:** https://lmsys.org/blog/2023-03-30-vicuna/
|
25 |
-
- **Paper:** https://arxiv.org/abs/2306.05685
|
26 |
-
- **Demo:** https://chat.lmsys.org/
|
27 |
-
|
28 |
-
## Uses
|
29 |
-
|
30 |
-
The primary use of Vicuna is research on large language models and chatbots.
|
31 |
-
The primary intended users of the model are researchers and hobbyists in natural language processing, machine learning, and artificial intelligence.
|
32 |
-
|
33 |
-
## How to Get Started with the Model
|
34 |
-
|
35 |
-
Command line interface: https://github.com/lm-sys/FastChat#vicuna-weights.
|
36 |
-
APIs (OpenAI API, Huggingface API): https://github.com/lm-sys/FastChat/tree/main#api.
|
37 |
-
|
38 |
-
## Training Details
|
39 |
-
|
40 |
-
Vicuna v1.1 is fine-tuned from LLaMA with supervised instruction fine-tuning.
|
41 |
-
The training data is around 70K conversations collected from ShareGPT.com.
|
42 |
-
See more details in the "Training Details of Vicuna Models" section in the appendix of this [paper](https://arxiv.org/pdf/2306.05685.pdf).
|
43 |
-
|
44 |
-
## Evaluation
|
45 |
-
|
46 |
-
Vicuna is evaluated with standard benchmarks, human preference, and LLM-as-a-judge. See more details in this [paper](https://arxiv.org/pdf/2306.05685.pdf) and [leaderboard](https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard).
|
47 |
-
|
48 |
-
## Difference between different versions of Vicuna
|
49 |
-
See [vicuna_weights_version.md](https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md)
|
50 |
-
|
51 |
-
## Acknowledgement
|
52 |
-
|
53 |
-
Special thanks to [@TheBloke](https://huggingface.co/TheBloke) for hosting this merged version of weights earlier.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SALMONN_PATHS/vicuna-13b-v1.1/config.json
DELETED
@@ -1,23 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"_name_or_path": "/workspace/llama-13B-HF",
|
3 |
-
"architectures": [
|
4 |
-
"LlamaForCausalLM"
|
5 |
-
],
|
6 |
-
"bos_token_id": 1,
|
7 |
-
"eos_token_id": 2,
|
8 |
-
"hidden_act": "silu",
|
9 |
-
"hidden_size": 5120,
|
10 |
-
"initializer_range": 0.02,
|
11 |
-
"intermediate_size": 13824,
|
12 |
-
"max_position_embeddings": 2048,
|
13 |
-
"model_type": "llama",
|
14 |
-
"num_attention_heads": 40,
|
15 |
-
"num_hidden_layers": 40,
|
16 |
-
"pad_token_id": 0,
|
17 |
-
"rms_norm_eps": 1e-06,
|
18 |
-
"tie_word_embeddings": false,
|
19 |
-
"torch_dtype": "float16",
|
20 |
-
"transformers_version": "4.29.0.dev0",
|
21 |
-
"use_cache": true,
|
22 |
-
"vocab_size": 32000
|
23 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SALMONN_PATHS/vicuna-13b-v1.1/generation_config.json
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"_from_model_config": true,
|
3 |
-
"bos_token_id": 1,
|
4 |
-
"eos_token_id": 2,
|
5 |
-
"pad_token_id": 0,
|
6 |
-
"transformers_version": "4.28.0.dev0"
|
7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SALMONN_PATHS/vicuna-13b-v1.1/pytorch_model-00001-of-00003.bin
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:7e754ec47918eb6569468a1fbdc68ee376202eb4e34c97a05951d894e195d296
|
3 |
-
size 9948728430
|
|
|
|
|
|
|
|
SALMONN_PATHS/vicuna-13b-v1.1/pytorch_model-00002-of-00003.bin
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:eecea1120efcd762af48bf54d7d5ff9ef3128cc33f144533dfc5a926fb6c541c
|
3 |
-
size 9904165024
|
|
|
|
|
|
|
|
SALMONN_PATHS/vicuna-13b-v1.1/pytorch_model-00003-of-00003.bin
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:bf1ed63a11c0d9176006fe49914eaa911f0e73c2aaf614c11f8534ec934d7a89
|
3 |
-
size 6506663689
|
|
|
|
|
|
|
|
SALMONN_PATHS/vicuna-13b-v1.1/pytorch_model.bin.index.json
DELETED
@@ -1,410 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"metadata": {
|
3 |
-
"total_size": 26031738880
|
4 |
-
},
|
5 |
-
"weight_map": {
|
6 |
-
"lm_head.weight": "pytorch_model-00003-of-00003.bin",
|
7 |
-
"model.embed_tokens.weight": "pytorch_model-00001-of-00003.bin",
|
8 |
-
"model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
9 |
-
"model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
10 |
-
"model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
11 |
-
"model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
12 |
-
"model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
13 |
-
"model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
14 |
-
"model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
15 |
-
"model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
16 |
-
"model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
17 |
-
"model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
18 |
-
"model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
19 |
-
"model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
20 |
-
"model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
21 |
-
"model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
22 |
-
"model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
23 |
-
"model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
24 |
-
"model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
25 |
-
"model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
26 |
-
"model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
27 |
-
"model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
28 |
-
"model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
29 |
-
"model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
30 |
-
"model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
31 |
-
"model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
32 |
-
"model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
33 |
-
"model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
34 |
-
"model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
35 |
-
"model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
36 |
-
"model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
37 |
-
"model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
38 |
-
"model.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
39 |
-
"model.layers.11.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
40 |
-
"model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
41 |
-
"model.layers.11.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
42 |
-
"model.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
43 |
-
"model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
44 |
-
"model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
45 |
-
"model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
46 |
-
"model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
47 |
-
"model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
48 |
-
"model.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
49 |
-
"model.layers.12.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
50 |
-
"model.layers.12.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
51 |
-
"model.layers.12.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
52 |
-
"model.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
53 |
-
"model.layers.12.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
54 |
-
"model.layers.12.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
55 |
-
"model.layers.12.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
56 |
-
"model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
57 |
-
"model.layers.12.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
58 |
-
"model.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
59 |
-
"model.layers.13.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
60 |
-
"model.layers.13.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
61 |
-
"model.layers.13.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
62 |
-
"model.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
63 |
-
"model.layers.13.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
64 |
-
"model.layers.13.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
65 |
-
"model.layers.13.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
66 |
-
"model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
67 |
-
"model.layers.13.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
68 |
-
"model.layers.14.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
69 |
-
"model.layers.14.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
70 |
-
"model.layers.14.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
71 |
-
"model.layers.14.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
72 |
-
"model.layers.14.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
73 |
-
"model.layers.14.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
74 |
-
"model.layers.14.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
75 |
-
"model.layers.14.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
76 |
-
"model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
77 |
-
"model.layers.14.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
78 |
-
"model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
79 |
-
"model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
80 |
-
"model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
81 |
-
"model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
82 |
-
"model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
83 |
-
"model.layers.15.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
84 |
-
"model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
85 |
-
"model.layers.15.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
86 |
-
"model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
87 |
-
"model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
88 |
-
"model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
89 |
-
"model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
90 |
-
"model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
91 |
-
"model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
92 |
-
"model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
93 |
-
"model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
94 |
-
"model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
95 |
-
"model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
96 |
-
"model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
97 |
-
"model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
98 |
-
"model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
99 |
-
"model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
100 |
-
"model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
101 |
-
"model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
102 |
-
"model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
103 |
-
"model.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
104 |
-
"model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
105 |
-
"model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
106 |
-
"model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
107 |
-
"model.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
108 |
-
"model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
109 |
-
"model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
110 |
-
"model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
111 |
-
"model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
112 |
-
"model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
113 |
-
"model.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
114 |
-
"model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
115 |
-
"model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
116 |
-
"model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
117 |
-
"model.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
118 |
-
"model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
119 |
-
"model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
120 |
-
"model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
121 |
-
"model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
122 |
-
"model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
123 |
-
"model.layers.19.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
124 |
-
"model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
125 |
-
"model.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
126 |
-
"model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
127 |
-
"model.layers.19.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
128 |
-
"model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
129 |
-
"model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
130 |
-
"model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
131 |
-
"model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
132 |
-
"model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
133 |
-
"model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
134 |
-
"model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
135 |
-
"model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
136 |
-
"model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
137 |
-
"model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
138 |
-
"model.layers.20.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
139 |
-
"model.layers.20.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
140 |
-
"model.layers.20.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
141 |
-
"model.layers.20.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
142 |
-
"model.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
143 |
-
"model.layers.20.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
144 |
-
"model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
145 |
-
"model.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
146 |
-
"model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
147 |
-
"model.layers.20.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
148 |
-
"model.layers.21.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
149 |
-
"model.layers.21.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
150 |
-
"model.layers.21.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
151 |
-
"model.layers.21.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
152 |
-
"model.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
153 |
-
"model.layers.21.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
154 |
-
"model.layers.21.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
155 |
-
"model.layers.21.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
156 |
-
"model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
157 |
-
"model.layers.21.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
158 |
-
"model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
159 |
-
"model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
160 |
-
"model.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
161 |
-
"model.layers.22.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
162 |
-
"model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
163 |
-
"model.layers.22.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
164 |
-
"model.layers.22.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
165 |
-
"model.layers.22.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
166 |
-
"model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
167 |
-
"model.layers.22.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
168 |
-
"model.layers.23.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
169 |
-
"model.layers.23.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
170 |
-
"model.layers.23.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
171 |
-
"model.layers.23.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
172 |
-
"model.layers.23.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
173 |
-
"model.layers.23.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
174 |
-
"model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
175 |
-
"model.layers.23.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
176 |
-
"model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
177 |
-
"model.layers.23.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
178 |
-
"model.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
179 |
-
"model.layers.24.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
180 |
-
"model.layers.24.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
181 |
-
"model.layers.24.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
182 |
-
"model.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
183 |
-
"model.layers.24.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
184 |
-
"model.layers.24.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
185 |
-
"model.layers.24.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
186 |
-
"model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
187 |
-
"model.layers.24.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
188 |
-
"model.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
189 |
-
"model.layers.25.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
190 |
-
"model.layers.25.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
191 |
-
"model.layers.25.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
192 |
-
"model.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
193 |
-
"model.layers.25.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
194 |
-
"model.layers.25.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
195 |
-
"model.layers.25.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
196 |
-
"model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
197 |
-
"model.layers.25.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
198 |
-
"model.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
199 |
-
"model.layers.26.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
200 |
-
"model.layers.26.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
201 |
-
"model.layers.26.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
202 |
-
"model.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
203 |
-
"model.layers.26.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
204 |
-
"model.layers.26.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
205 |
-
"model.layers.26.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
206 |
-
"model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
207 |
-
"model.layers.26.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
208 |
-
"model.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
209 |
-
"model.layers.27.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
210 |
-
"model.layers.27.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
211 |
-
"model.layers.27.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
212 |
-
"model.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
213 |
-
"model.layers.27.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
214 |
-
"model.layers.27.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
215 |
-
"model.layers.27.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
216 |
-
"model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
217 |
-
"model.layers.27.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
218 |
-
"model.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
219 |
-
"model.layers.28.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
220 |
-
"model.layers.28.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
221 |
-
"model.layers.28.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
222 |
-
"model.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
223 |
-
"model.layers.28.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
224 |
-
"model.layers.28.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
225 |
-
"model.layers.28.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
226 |
-
"model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
227 |
-
"model.layers.28.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
228 |
-
"model.layers.29.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
229 |
-
"model.layers.29.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
230 |
-
"model.layers.29.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
231 |
-
"model.layers.29.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
232 |
-
"model.layers.29.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
233 |
-
"model.layers.29.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
234 |
-
"model.layers.29.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
235 |
-
"model.layers.29.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
236 |
-
"model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
237 |
-
"model.layers.29.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
238 |
-
"model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
239 |
-
"model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
240 |
-
"model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
241 |
-
"model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
242 |
-
"model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
243 |
-
"model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
244 |
-
"model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
245 |
-
"model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
246 |
-
"model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
247 |
-
"model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
248 |
-
"model.layers.30.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
249 |
-
"model.layers.30.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
250 |
-
"model.layers.30.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
251 |
-
"model.layers.30.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
252 |
-
"model.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
253 |
-
"model.layers.30.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
254 |
-
"model.layers.30.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
255 |
-
"model.layers.30.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
256 |
-
"model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
257 |
-
"model.layers.30.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
258 |
-
"model.layers.31.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
259 |
-
"model.layers.31.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
260 |
-
"model.layers.31.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
261 |
-
"model.layers.31.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
262 |
-
"model.layers.31.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
263 |
-
"model.layers.31.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
264 |
-
"model.layers.31.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
265 |
-
"model.layers.31.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
266 |
-
"model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
267 |
-
"model.layers.31.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
268 |
-
"model.layers.32.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
269 |
-
"model.layers.32.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
270 |
-
"model.layers.32.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
271 |
-
"model.layers.32.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
272 |
-
"model.layers.32.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
273 |
-
"model.layers.32.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
274 |
-
"model.layers.32.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
275 |
-
"model.layers.32.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
276 |
-
"model.layers.32.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
277 |
-
"model.layers.32.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
278 |
-
"model.layers.33.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
279 |
-
"model.layers.33.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
280 |
-
"model.layers.33.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
281 |
-
"model.layers.33.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
282 |
-
"model.layers.33.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
283 |
-
"model.layers.33.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
284 |
-
"model.layers.33.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
285 |
-
"model.layers.33.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
286 |
-
"model.layers.33.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
287 |
-
"model.layers.33.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
288 |
-
"model.layers.34.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
289 |
-
"model.layers.34.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
290 |
-
"model.layers.34.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
291 |
-
"model.layers.34.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
292 |
-
"model.layers.34.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
293 |
-
"model.layers.34.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
294 |
-
"model.layers.34.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
295 |
-
"model.layers.34.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
296 |
-
"model.layers.34.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
297 |
-
"model.layers.34.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
298 |
-
"model.layers.35.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
299 |
-
"model.layers.35.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
300 |
-
"model.layers.35.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
301 |
-
"model.layers.35.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
302 |
-
"model.layers.35.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
303 |
-
"model.layers.35.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
304 |
-
"model.layers.35.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
305 |
-
"model.layers.35.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
306 |
-
"model.layers.35.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
307 |
-
"model.layers.35.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
308 |
-
"model.layers.36.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
309 |
-
"model.layers.36.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
310 |
-
"model.layers.36.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
311 |
-
"model.layers.36.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
312 |
-
"model.layers.36.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
313 |
-
"model.layers.36.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
314 |
-
"model.layers.36.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
315 |
-
"model.layers.36.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
316 |
-
"model.layers.36.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
317 |
-
"model.layers.36.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
318 |
-
"model.layers.37.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
319 |
-
"model.layers.37.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
320 |
-
"model.layers.37.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
321 |
-
"model.layers.37.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
322 |
-
"model.layers.37.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
323 |
-
"model.layers.37.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
324 |
-
"model.layers.37.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
325 |
-
"model.layers.37.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
326 |
-
"model.layers.37.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
327 |
-
"model.layers.37.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
328 |
-
"model.layers.38.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
329 |
-
"model.layers.38.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
330 |
-
"model.layers.38.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
331 |
-
"model.layers.38.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
332 |
-
"model.layers.38.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
333 |
-
"model.layers.38.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
334 |
-
"model.layers.38.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
335 |
-
"model.layers.38.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
336 |
-
"model.layers.38.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
337 |
-
"model.layers.38.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
338 |
-
"model.layers.39.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
339 |
-
"model.layers.39.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
340 |
-
"model.layers.39.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
341 |
-
"model.layers.39.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
342 |
-
"model.layers.39.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
343 |
-
"model.layers.39.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
344 |
-
"model.layers.39.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
345 |
-
"model.layers.39.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
346 |
-
"model.layers.39.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
347 |
-
"model.layers.39.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
348 |
-
"model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
349 |
-
"model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
350 |
-
"model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
351 |
-
"model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
352 |
-
"model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
353 |
-
"model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
354 |
-
"model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
355 |
-
"model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
356 |
-
"model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
357 |
-
"model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
358 |
-
"model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
359 |
-
"model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
360 |
-
"model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
361 |
-
"model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
362 |
-
"model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
363 |
-
"model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
364 |
-
"model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
365 |
-
"model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
366 |
-
"model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
367 |
-
"model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
368 |
-
"model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
369 |
-
"model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
370 |
-
"model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
371 |
-
"model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
372 |
-
"model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
373 |
-
"model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
374 |
-
"model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
375 |
-
"model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
376 |
-
"model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
377 |
-
"model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
378 |
-
"model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
379 |
-
"model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
380 |
-
"model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
381 |
-
"model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
382 |
-
"model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
383 |
-
"model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
384 |
-
"model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
385 |
-
"model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
386 |
-
"model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
387 |
-
"model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
388 |
-
"model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
389 |
-
"model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
390 |
-
"model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
391 |
-
"model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
392 |
-
"model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
393 |
-
"model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
394 |
-
"model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
395 |
-
"model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
396 |
-
"model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
397 |
-
"model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
398 |
-
"model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
399 |
-
"model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
400 |
-
"model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
401 |
-
"model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
402 |
-
"model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
403 |
-
"model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
404 |
-
"model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
405 |
-
"model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
406 |
-
"model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
407 |
-
"model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
408 |
-
"model.norm.weight": "pytorch_model-00003-of-00003.bin"
|
409 |
-
}
|
410 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SALMONN_PATHS/vicuna-13b-v1.1/special_tokens_map.json
DELETED
@@ -1,23 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"bos_token": {
|
3 |
-
"content": "<s>",
|
4 |
-
"lstrip": false,
|
5 |
-
"normalized": true,
|
6 |
-
"rstrip": false,
|
7 |
-
"single_word": false
|
8 |
-
},
|
9 |
-
"eos_token": {
|
10 |
-
"content": "</s>",
|
11 |
-
"lstrip": false,
|
12 |
-
"normalized": true,
|
13 |
-
"rstrip": false,
|
14 |
-
"single_word": false
|
15 |
-
},
|
16 |
-
"unk_token": {
|
17 |
-
"content": "<unk>",
|
18 |
-
"lstrip": false,
|
19 |
-
"normalized": true,
|
20 |
-
"rstrip": false,
|
21 |
-
"single_word": false
|
22 |
-
}
|
23 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SALMONN_PATHS/vicuna-13b-v1.1/tokenizer.model
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
-
size 499723
|
|
|
|
|
|
|
|
SALMONN_PATHS/vicuna-13b-v1.1/tokenizer_config.json
DELETED
@@ -1,33 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"add_bos_token": true,
|
3 |
-
"add_eos_token": false,
|
4 |
-
"bos_token": {
|
5 |
-
"__type": "AddedToken",
|
6 |
-
"content": "<s>",
|
7 |
-
"lstrip": false,
|
8 |
-
"normalized": true,
|
9 |
-
"rstrip": false,
|
10 |
-
"single_word": false
|
11 |
-
},
|
12 |
-
"clean_up_tokenization_spaces": false,
|
13 |
-
"eos_token": {
|
14 |
-
"__type": "AddedToken",
|
15 |
-
"content": "</s>",
|
16 |
-
"lstrip": false,
|
17 |
-
"normalized": true,
|
18 |
-
"rstrip": false,
|
19 |
-
"single_word": false
|
20 |
-
},
|
21 |
-
"model_max_length": 1000000000000000019884624838656,
|
22 |
-
"pad_token": null,
|
23 |
-
"sp_model_kwargs": {},
|
24 |
-
"tokenizer_class": "LlamaTokenizer",
|
25 |
-
"unk_token": {
|
26 |
-
"__type": "AddedToken",
|
27 |
-
"content": "<unk>",
|
28 |
-
"lstrip": false,
|
29 |
-
"normalized": true,
|
30 |
-
"rstrip": false,
|
31 |
-
"single_word": false
|
32 |
-
}
|
33 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SALMONN_PATHS/whisper-large-v2/.gitattributes
DELETED
@@ -1,34 +0,0 @@
|
|
1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SALMONN_PATHS/whisper-large-v2/README.md
DELETED
@@ -1,395 +0,0 @@
|
|
1 |
-
---
|
2 |
-
language:
|
3 |
-
- en
|
4 |
-
- zh
|
5 |
-
- de
|
6 |
-
- es
|
7 |
-
- ru
|
8 |
-
- ko
|
9 |
-
- fr
|
10 |
-
- ja
|
11 |
-
- pt
|
12 |
-
- tr
|
13 |
-
- pl
|
14 |
-
- ca
|
15 |
-
- nl
|
16 |
-
- ar
|
17 |
-
- sv
|
18 |
-
- it
|
19 |
-
- id
|
20 |
-
- hi
|
21 |
-
- fi
|
22 |
-
- vi
|
23 |
-
- he
|
24 |
-
- uk
|
25 |
-
- el
|
26 |
-
- ms
|
27 |
-
- cs
|
28 |
-
- ro
|
29 |
-
- da
|
30 |
-
- hu
|
31 |
-
- ta
|
32 |
-
- no
|
33 |
-
- th
|
34 |
-
- ur
|
35 |
-
- hr
|
36 |
-
- bg
|
37 |
-
- lt
|
38 |
-
- la
|
39 |
-
- mi
|
40 |
-
- ml
|
41 |
-
- cy
|
42 |
-
- sk
|
43 |
-
- te
|
44 |
-
- fa
|
45 |
-
- lv
|
46 |
-
- bn
|
47 |
-
- sr
|
48 |
-
- az
|
49 |
-
- sl
|
50 |
-
- kn
|
51 |
-
- et
|
52 |
-
- mk
|
53 |
-
- br
|
54 |
-
- eu
|
55 |
-
- is
|
56 |
-
- hy
|
57 |
-
- ne
|
58 |
-
- mn
|
59 |
-
- bs
|
60 |
-
- kk
|
61 |
-
- sq
|
62 |
-
- sw
|
63 |
-
- gl
|
64 |
-
- mr
|
65 |
-
- pa
|
66 |
-
- si
|
67 |
-
- km
|
68 |
-
- sn
|
69 |
-
- yo
|
70 |
-
- so
|
71 |
-
- af
|
72 |
-
- oc
|
73 |
-
- ka
|
74 |
-
- be
|
75 |
-
- tg
|
76 |
-
- sd
|
77 |
-
- gu
|
78 |
-
- am
|
79 |
-
- yi
|
80 |
-
- lo
|
81 |
-
- uz
|
82 |
-
- fo
|
83 |
-
- ht
|
84 |
-
- ps
|
85 |
-
- tk
|
86 |
-
- nn
|
87 |
-
- mt
|
88 |
-
- sa
|
89 |
-
- lb
|
90 |
-
- my
|
91 |
-
- bo
|
92 |
-
- tl
|
93 |
-
- mg
|
94 |
-
- as
|
95 |
-
- tt
|
96 |
-
- haw
|
97 |
-
- ln
|
98 |
-
- ha
|
99 |
-
- ba
|
100 |
-
- jw
|
101 |
-
- su
|
102 |
-
tags:
|
103 |
-
- audio
|
104 |
-
- automatic-speech-recognition
|
105 |
-
- hf-asr-leaderboard
|
106 |
-
widget:
|
107 |
-
- example_title: Librispeech sample 1
|
108 |
-
src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
|
109 |
-
- example_title: Librispeech sample 2
|
110 |
-
src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
|
111 |
-
pipeline_tag: automatic-speech-recognition
|
112 |
-
license: apache-2.0
|
113 |
-
---
|
114 |
-
|
115 |
-
# Whisper
|
116 |
-
|
117 |
-
Whisper is a pre-trained model for automatic speech recognition (ASR) and speech translation. Trained on 680k hours
|
118 |
-
of labelled data, Whisper models demonstrate a strong ability to generalise to many datasets and domains **without** the need
|
119 |
-
for fine-tuning.
|
120 |
-
|
121 |
-
Whisper was proposed in the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://arxiv.org/abs/2212.04356)
|
122 |
-
by Alec Radford et al. from OpenAI. The original code repository can be found [here](https://github.com/openai/whisper).
|
123 |
-
|
124 |
-
Compared to the Whisper large model, the large-v2 model is trained for 2.5x more epochs with added regularization
|
125 |
-
for improved performance.
|
126 |
-
|
127 |
-
**Disclaimer**: Content for this model card has partly been written by the Hugging Face team, and parts of it were
|
128 |
-
copied and pasted from the original model card.
|
129 |
-
|
130 |
-
## Model details
|
131 |
-
|
132 |
-
Whisper is a Transformer based encoder-decoder model, also referred to as a _sequence-to-sequence_ model.
|
133 |
-
It was trained on 680k hours of labelled speech data annotated using large-scale weak supervision.
|
134 |
-
|
135 |
-
The models were trained on either English-only data or multilingual data. The English-only models were trained
|
136 |
-
on the task of speech recognition. The multilingual models were trained on both speech recognition and speech
|
137 |
-
translation. For speech recognition, the model predicts transcriptions in the *same* language as the audio.
|
138 |
-
For speech translation, the model predicts transcriptions to a *different* language to the audio.
|
139 |
-
|
140 |
-
Whisper checkpoints come in five configurations of varying model sizes.
|
141 |
-
The smallest four are trained on either English-only or multilingual data.
|
142 |
-
The largest checkpoints are multilingual only. All ten of the pre-trained checkpoints
|
143 |
-
are available on the [Hugging Face Hub](https://huggingface.co/models?search=openai/whisper). The
|
144 |
-
checkpoints are summarised in the following table with links to the models on the Hub:
|
145 |
-
|
146 |
-
| Size | Parameters | English-only | Multilingual |
|
147 |
-
|----------|------------|------------------------------------------------------|-----------------------------------------------------|
|
148 |
-
| tiny | 39 M | [✓](https://huggingface.co/openai/whisper-tiny.en) | [✓](https://huggingface.co/openai/whisper-tiny) |
|
149 |
-
| base | 74 M | [✓](https://huggingface.co/openai/whisper-base.en) | [✓](https://huggingface.co/openai/whisper-base) |
|
150 |
-
| small | 244 M | [✓](https://huggingface.co/openai/whisper-small.en) | [✓](https://huggingface.co/openai/whisper-small) |
|
151 |
-
| medium | 769 M | [✓](https://huggingface.co/openai/whisper-medium.en) | [✓](https://huggingface.co/openai/whisper-medium) |
|
152 |
-
| large | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large) |
|
153 |
-
| large-v2 | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large-v2) |
|
154 |
-
|
155 |
-
# Usage
|
156 |
-
|
157 |
-
To transcribe audio samples, the model has to be used alongside a [`WhisperProcessor`](https://huggingface.co/docs/transformers/model_doc/whisper#transformers.WhisperProcessor).
|
158 |
-
|
159 |
-
The `WhisperProcessor` is used to:
|
160 |
-
1. Pre-process the audio inputs (converting them to log-Mel spectrograms for the model)
|
161 |
-
2. Post-process the model outputs (converting them from tokens to text)
|
162 |
-
|
163 |
-
The model is informed of which task to perform (transcription or translation) by passing the appropriate "context tokens". These context tokens
|
164 |
-
are a sequence of tokens that are given to the decoder at the start of the decoding process, and take the following order:
|
165 |
-
1. The transcription always starts with the `<|startoftranscript|>` token
|
166 |
-
2. The second token is the language token (e.g. `<|en|>` for English)
|
167 |
-
3. The third token is the "task token". It can take one of two values: `<|transcribe|>` for speech recognition or `<|translate|>` for speech translation
|
168 |
-
4. In addition, a `<|notimestamps|>` token is added if the model should not include timestamp prediction
|
169 |
-
|
170 |
-
Thus, a typical sequence of context tokens might look as follows:
|
171 |
-
```
|
172 |
-
<|startoftranscript|> <|en|> <|transcribe|> <|notimestamps|>
|
173 |
-
```
|
174 |
-
Which tells the model to decode in English, under the task of speech recognition, and not to predict timestamps.
|
175 |
-
|
176 |
-
These tokens can either be forced or un-forced. If they are forced, the model is made to predict each token at
|
177 |
-
each position. This allows one to control the output language and task for the Whisper model. If they are un-forced,
|
178 |
-
the Whisper model will automatically predict the output langauge and task itself.
|
179 |
-
|
180 |
-
The context tokens can be set accordingly:
|
181 |
-
|
182 |
-
```python
|
183 |
-
model.config.forced_decoder_ids = WhisperProcessor.get_decoder_prompt_ids(language="english", task="transcribe")
|
184 |
-
```
|
185 |
-
|
186 |
-
Which forces the model to predict in English under the task of speech recognition.
|
187 |
-
|
188 |
-
## Transcription
|
189 |
-
|
190 |
-
### English to English
|
191 |
-
In this example, the context tokens are 'unforced', meaning the model automatically predicts the output language
|
192 |
-
(English) and task (transcribe).
|
193 |
-
|
194 |
-
```python
|
195 |
-
>>> from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
196 |
-
>>> from datasets import load_dataset
|
197 |
-
|
198 |
-
>>> # load model and processor
|
199 |
-
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-large-v2")
|
200 |
-
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large-v2")
|
201 |
-
>>> model.config.forced_decoder_ids = None
|
202 |
-
|
203 |
-
>>> # load dummy dataset and read audio files
|
204 |
-
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
205 |
-
>>> sample = ds[0]["audio"]
|
206 |
-
>>> input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features
|
207 |
-
|
208 |
-
>>> # generate token ids
|
209 |
-
>>> predicted_ids = model.generate(input_features)
|
210 |
-
>>> # decode token ids to text
|
211 |
-
>>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False)
|
212 |
-
['<|startoftranscript|><|en|><|transcribe|><|notimestamps|> Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.<|endoftext|>']
|
213 |
-
|
214 |
-
>>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
215 |
-
[' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.']
|
216 |
-
```
|
217 |
-
The context tokens can be removed from the start of the transcription by setting `skip_special_tokens=True`.
|
218 |
-
|
219 |
-
### French to French
|
220 |
-
The following example demonstrates French to French transcription by setting the decoder ids appropriately.
|
221 |
-
|
222 |
-
```python
|
223 |
-
>>> from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
224 |
-
>>> from datasets import Audio, load_dataset
|
225 |
-
|
226 |
-
>>> # load model and processor
|
227 |
-
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-large-v2")
|
228 |
-
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large-v2")
|
229 |
-
>>> forced_decoder_ids = processor.get_decoder_prompt_ids(language="french", task="transcribe")
|
230 |
-
|
231 |
-
>>> # load streaming dataset and read first audio sample
|
232 |
-
>>> ds = load_dataset("common_voice", "fr", split="test", streaming=True)
|
233 |
-
>>> ds = ds.cast_column("audio", Audio(sampling_rate=16_000))
|
234 |
-
>>> input_speech = next(iter(ds))["audio"]
|
235 |
-
>>> input_features = processor(input_speech["array"], sampling_rate=input_speech["sampling_rate"], return_tensors="pt").input_features
|
236 |
-
|
237 |
-
>>> # generate token ids
|
238 |
-
>>> predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids)
|
239 |
-
>>> # decode token ids to text
|
240 |
-
>>> transcription = processor.batch_decode(predicted_ids)
|
241 |
-
['<|startoftranscript|><|fr|><|transcribe|><|notimestamps|> Un vrai travail intéressant va enfin être mené sur ce sujet.<|endoftext|>']
|
242 |
-
|
243 |
-
>>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
244 |
-
[' Un vrai travail intéressant va enfin être mené sur ce sujet.']
|
245 |
-
```
|
246 |
-
|
247 |
-
## Translation
|
248 |
-
Setting the task to "translate" forces the Whisper model to perform speech translation.
|
249 |
-
|
250 |
-
### French to English
|
251 |
-
|
252 |
-
```python
|
253 |
-
>>> from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
254 |
-
>>> from datasets import Audio, load_dataset
|
255 |
-
|
256 |
-
>>> # load model and processor
|
257 |
-
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-large-v2")
|
258 |
-
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large-v2")
|
259 |
-
>>> forced_decoder_ids = processor.get_decoder_prompt_ids(language="french", task="translate")
|
260 |
-
|
261 |
-
>>> # load streaming dataset and read first audio sample
|
262 |
-
>>> ds = load_dataset("common_voice", "fr", split="test", streaming=True)
|
263 |
-
>>> ds = ds.cast_column("audio", Audio(sampling_rate=16_000))
|
264 |
-
>>> input_speech = next(iter(ds))["audio"]
|
265 |
-
>>> input_features = processor(input_speech["array"], sampling_rate=input_speech["sampling_rate"], return_tensors="pt").input_features
|
266 |
-
|
267 |
-
>>> # generate token ids
|
268 |
-
>>> predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids)
|
269 |
-
>>> # decode token ids to text
|
270 |
-
>>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
271 |
-
[' A very interesting work, we will finally be given on this subject.']
|
272 |
-
```
|
273 |
-
|
274 |
-
## Evaluation
|
275 |
-
|
276 |
-
This code snippet shows how to evaluate Whisper Large on [LibriSpeech test-clean](https://huggingface.co/datasets/librispeech_asr):
|
277 |
-
|
278 |
-
```python
|
279 |
-
>>> from datasets import load_dataset
|
280 |
-
>>> from transformers import WhisperForConditionalGeneration, WhisperProcessor
|
281 |
-
>>> import torch
|
282 |
-
>>> from evaluate import load
|
283 |
-
|
284 |
-
>>> librispeech_test_clean = load_dataset("librispeech_asr", "clean", split="test")
|
285 |
-
|
286 |
-
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-large-v2")
|
287 |
-
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large-v2").to("cuda")
|
288 |
-
|
289 |
-
>>> def map_to_pred(batch):
|
290 |
-
>>> audio = batch["audio"]
|
291 |
-
>>> input_features = processor(audio["array"], sampling_rate=audio["sampling_rate"], return_tensors="pt").input_features
|
292 |
-
>>> batch["reference"] = processor.tokenizer._normalize(batch['text'])
|
293 |
-
>>>
|
294 |
-
>>> with torch.no_grad():
|
295 |
-
>>> predicted_ids = model.generate(input_features.to("cuda"))[0]
|
296 |
-
>>> transcription = processor.decode(predicted_ids)
|
297 |
-
>>> batch["prediction"] = processor.tokenizer._normalize(transcription)
|
298 |
-
>>> return batch
|
299 |
-
|
300 |
-
>>> result = librispeech_test_clean.map(map_to_pred)
|
301 |
-
|
302 |
-
>>> wer = load("wer")
|
303 |
-
>>> print(100 * wer.compute(references=result["reference"], predictions=result["prediction"]))
|
304 |
-
3.0003583080317572
|
305 |
-
```
|
306 |
-
|
307 |
-
## Long-Form Transcription
|
308 |
-
|
309 |
-
The Whisper model is intrinsically designed to work on audio samples of up to 30s in duration. However, by using a chunking
|
310 |
-
algorithm, it can be used to transcribe audio samples of up to arbitrary length. This is possible through Transformers
|
311 |
-
[`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
|
312 |
-
method. Chunking is enabled by setting `chunk_length_s=30` when instantiating the pipeline. With chunking enabled, the pipeline
|
313 |
-
can be run with batched inference. It can also be extended to predict sequence level timestamps by passing `return_timestamps=True`:
|
314 |
-
|
315 |
-
```python
|
316 |
-
>>> import torch
|
317 |
-
>>> from transformers import pipeline
|
318 |
-
>>> from datasets import load_dataset
|
319 |
-
|
320 |
-
>>> device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
321 |
-
|
322 |
-
>>> pipe = pipeline(
|
323 |
-
>>> "automatic-speech-recognition",
|
324 |
-
>>> model="openai/whisper-large-v2",
|
325 |
-
>>> chunk_length_s=30,
|
326 |
-
>>> device=device,
|
327 |
-
>>> )
|
328 |
-
|
329 |
-
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
330 |
-
>>> sample = ds[0]["audio"]
|
331 |
-
|
332 |
-
>>> prediction = pipe(sample.copy(), batch_size=8)["text"]
|
333 |
-
" Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel."
|
334 |
-
|
335 |
-
>>> # we can also return timestamps for the predictions
|
336 |
-
>>> prediction = pipe(sample.copy(), batch_size=8, return_timestamps=True)["chunks"]
|
337 |
-
[{'text': ' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.',
|
338 |
-
'timestamp': (0.0, 5.44)}]
|
339 |
-
```
|
340 |
-
|
341 |
-
Refer to the blog post [ASR Chunking](https://huggingface.co/blog/asr-chunking) for more details on the chunking algorithm.
|
342 |
-
|
343 |
-
## Fine-Tuning
|
344 |
-
|
345 |
-
The pre-trained Whisper model demonstrates a strong ability to generalise to different datasets and domains. However,
|
346 |
-
its predictive capabilities can be improved further for certain languages and tasks through *fine-tuning*. The blog
|
347 |
-
post [Fine-Tune Whisper with 🤗 Transformers](https://huggingface.co/blog/fine-tune-whisper) provides a step-by-step
|
348 |
-
guide to fine-tuning the Whisper model with as little as 5 hours of labelled data.
|
349 |
-
|
350 |
-
### Evaluated Use
|
351 |
-
|
352 |
-
The primary intended users of these models are AI researchers studying robustness, generalization, capabilities, biases, and constraints of the current model. However, Whisper is also potentially quite useful as an ASR solution for developers, especially for English speech recognition. We recognize that once models are released, it is impossible to restrict access to only “intended” uses or to draw reasonable guidelines around what is or is not research.
|
353 |
-
|
354 |
-
The models are primarily trained and evaluated on ASR and speech translation to English tasks. They show strong ASR results in ~10 languages. They may exhibit additional capabilities, particularly if fine-tuned on certain tasks like voice activity detection, speaker classification, or speaker diarization but have not been robustly evaluated in these areas. We strongly recommend that users perform robust evaluations of the models in a particular context and domain before deploying them.
|
355 |
-
|
356 |
-
In particular, we caution against using Whisper models to transcribe recordings of individuals taken without their consent or purporting to use these models for any kind of subjective classification. We recommend against use in high-risk domains like decision-making contexts, where flaws in accuracy can lead to pronounced flaws in outcomes. The models are intended to transcribe and translate speech, use of the model for classification is not only not evaluated but also not appropriate, particularly to infer human attributes.
|
357 |
-
|
358 |
-
|
359 |
-
## Training Data
|
360 |
-
|
361 |
-
The models are trained on 680,000 hours of audio and the corresponding transcripts collected from the internet. 65% of this data (or 438,000 hours) represents English-language audio and matched English transcripts, roughly 18% (or 126,000 hours) represents non-English audio and English transcripts, while the final 17% (or 117,000 hours) represents non-English audio and the corresponding transcript. This non-English data represents 98 different languages.
|
362 |
-
|
363 |
-
As discussed in [the accompanying paper](https://cdn.openai.com/papers/whisper.pdf), we see that performance on transcription in a given language is directly correlated with the amount of training data we employ in that language.
|
364 |
-
|
365 |
-
|
366 |
-
## Performance and Limitations
|
367 |
-
|
368 |
-
Our studies show that, over many existing ASR systems, the models exhibit improved robustness to accents, background noise, technical language, as well as zero shot translation from multiple languages into English; and that accuracy on speech recognition and translation is near the state-of-the-art level.
|
369 |
-
|
370 |
-
However, because the models are trained in a weakly supervised manner using large-scale noisy data, the predictions may include texts that are not actually spoken in the audio input (i.e. hallucination). We hypothesize that this happens because, given their general knowledge of language, the models combine trying to predict the next word in audio with trying to transcribe the audio itself.
|
371 |
-
|
372 |
-
Our models perform unevenly across languages, and we observe lower accuracy on low-resource and/or low-discoverability languages or languages where we have less training data. The models also exhibit disparate performance on different accents and dialects of particular languages, which may include higher word error rate across speakers of different genders, races, ages, or other demographic criteria. Our full evaluation results are presented in [the paper accompanying this release](https://cdn.openai.com/papers/whisper.pdf).
|
373 |
-
|
374 |
-
In addition, the sequence-to-sequence architecture of the model makes it prone to generating repetitive texts, which can be mitigated to some degree by beam search and temperature scheduling but not perfectly. Further analysis on these limitations are provided in [the paper](https://cdn.openai.com/papers/whisper.pdf). It is likely that this behavior and hallucinations may be worse on lower-resource and/or lower-discoverability languages.
|
375 |
-
|
376 |
-
|
377 |
-
## Broader Implications
|
378 |
-
|
379 |
-
We anticipate that Whisper models’ transcription capabilities may be used for improving accessibility tools. While Whisper models cannot be used for real-time transcription out of the box – their speed and size suggest that others may be able to build applications on top of them that allow for near-real-time speech recognition and translation. The real value of beneficial applications built on top of Whisper models suggests that the disparate performance of these models may have real economic implications.
|
380 |
-
|
381 |
-
There are also potential dual use concerns that come with releasing Whisper. While we hope the technology will be used primarily for beneficial purposes, making ASR technology more accessible could enable more actors to build capable surveillance technologies or scale up existing surveillance efforts, as the speed and accuracy allow for affordable automatic transcription and translation of large volumes of audio communication. Moreover, these models may have some capabilities to recognize specific individuals out of the box, which in turn presents safety concerns related both to dual use and disparate performance. In practice, we expect that the cost of transcription is not the limiting factor of scaling up surveillance projects.
|
382 |
-
|
383 |
-
|
384 |
-
### BibTeX entry and citation info
|
385 |
-
```bibtex
|
386 |
-
@misc{radford2022whisper,
|
387 |
-
doi = {10.48550/ARXIV.2212.04356},
|
388 |
-
url = {https://arxiv.org/abs/2212.04356},
|
389 |
-
author = {Radford, Alec and Kim, Jong Wook and Xu, Tao and Brockman, Greg and McLeavey, Christine and Sutskever, Ilya},
|
390 |
-
title = {Robust Speech Recognition via Large-Scale Weak Supervision},
|
391 |
-
publisher = {arXiv},
|
392 |
-
year = {2022},
|
393 |
-
copyright = {arXiv.org perpetual, non-exclusive license}
|
394 |
-
}
|
395 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SALMONN_PATHS/whisper-large-v2/added_tokens.json
DELETED
@@ -1,1609 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"<|0.00|>": 50364,
|
3 |
-
"<|0.02|>": 50365,
|
4 |
-
"<|0.04|>": 50366,
|
5 |
-
"<|0.06|>": 50367,
|
6 |
-
"<|0.08|>": 50368,
|
7 |
-
"<|0.10|>": 50369,
|
8 |
-
"<|0.12|>": 50370,
|
9 |
-
"<|0.14|>": 50371,
|
10 |
-
"<|0.16|>": 50372,
|
11 |
-
"<|0.18|>": 50373,
|
12 |
-
"<|0.20|>": 50374,
|
13 |
-
"<|0.22|>": 50375,
|
14 |
-
"<|0.24|>": 50376,
|
15 |
-
"<|0.26|>": 50377,
|
16 |
-
"<|0.28|>": 50378,
|
17 |
-
"<|0.30|>": 50379,
|
18 |
-
"<|0.32|>": 50380,
|
19 |
-
"<|0.34|>": 50381,
|
20 |
-
"<|0.36|>": 50382,
|
21 |
-
"<|0.38|>": 50383,
|
22 |
-
"<|0.40|>": 50384,
|
23 |
-
"<|0.42|>": 50385,
|
24 |
-
"<|0.44|>": 50386,
|
25 |
-
"<|0.46|>": 50387,
|
26 |
-
"<|0.48|>": 50388,
|
27 |
-
"<|0.50|>": 50389,
|
28 |
-
"<|0.52|>": 50390,
|
29 |
-
"<|0.54|>": 50391,
|
30 |
-
"<|0.56|>": 50392,
|
31 |
-
"<|0.58|>": 50393,
|
32 |
-
"<|0.60|>": 50394,
|
33 |
-
"<|0.62|>": 50395,
|
34 |
-
"<|0.64|>": 50396,
|
35 |
-
"<|0.66|>": 50397,
|
36 |
-
"<|0.68|>": 50398,
|
37 |
-
"<|0.70|>": 50399,
|
38 |
-
"<|0.72|>": 50400,
|
39 |
-
"<|0.74|>": 50401,
|
40 |
-
"<|0.76|>": 50402,
|
41 |
-
"<|0.78|>": 50403,
|
42 |
-
"<|0.80|>": 50404,
|
43 |
-
"<|0.82|>": 50405,
|
44 |
-
"<|0.84|>": 50406,
|
45 |
-
"<|0.86|>": 50407,
|
46 |
-
"<|0.88|>": 50408,
|
47 |
-
"<|0.90|>": 50409,
|
48 |
-
"<|0.92|>": 50410,
|
49 |
-
"<|0.94|>": 50411,
|
50 |
-
"<|0.96|>": 50412,
|
51 |
-
"<|0.98|>": 50413,
|
52 |
-
"<|1.00|>": 50414,
|
53 |
-
"<|1.02|>": 50415,
|
54 |
-
"<|1.04|>": 50416,
|
55 |
-
"<|1.06|>": 50417,
|
56 |
-
"<|1.08|>": 50418,
|
57 |
-
"<|1.10|>": 50419,
|
58 |
-
"<|1.12|>": 50420,
|
59 |
-
"<|1.14|>": 50421,
|
60 |
-
"<|1.16|>": 50422,
|
61 |
-
"<|1.18|>": 50423,
|
62 |
-
"<|1.20|>": 50424,
|
63 |
-
"<|1.22|>": 50425,
|
64 |
-
"<|1.24|>": 50426,
|
65 |
-
"<|1.26|>": 50427,
|
66 |
-
"<|1.28|>": 50428,
|
67 |
-
"<|1.30|>": 50429,
|
68 |
-
"<|1.32|>": 50430,
|
69 |
-
"<|1.34|>": 50431,
|
70 |
-
"<|1.36|>": 50432,
|
71 |
-
"<|1.38|>": 50433,
|
72 |
-
"<|1.40|>": 50434,
|
73 |
-
"<|1.42|>": 50435,
|
74 |
-
"<|1.44|>": 50436,
|
75 |
-
"<|1.46|>": 50437,
|
76 |
-
"<|1.48|>": 50438,
|
77 |
-
"<|1.50|>": 50439,
|
78 |
-
"<|1.52|>": 50440,
|
79 |
-
"<|1.54|>": 50441,
|
80 |
-
"<|1.56|>": 50442,
|
81 |
-
"<|1.58|>": 50443,
|
82 |
-
"<|1.60|>": 50444,
|
83 |
-
"<|1.62|>": 50445,
|
84 |
-
"<|1.64|>": 50446,
|
85 |
-
"<|1.66|>": 50447,
|
86 |
-
"<|1.68|>": 50448,
|
87 |
-
"<|1.70|>": 50449,
|
88 |
-
"<|1.72|>": 50450,
|
89 |
-
"<|1.74|>": 50451,
|
90 |
-
"<|1.76|>": 50452,
|
91 |
-
"<|1.78|>": 50453,
|
92 |
-
"<|1.80|>": 50454,
|
93 |
-
"<|1.82|>": 50455,
|
94 |
-
"<|1.84|>": 50456,
|
95 |
-
"<|1.86|>": 50457,
|
96 |
-
"<|1.88|>": 50458,
|
97 |
-
"<|1.90|>": 50459,
|
98 |
-
"<|1.92|>": 50460,
|
99 |
-
"<|1.94|>": 50461,
|
100 |
-
"<|1.96|>": 50462,
|
101 |
-
"<|1.98|>": 50463,
|
102 |
-
"<|10.00|>": 50864,
|
103 |
-
"<|10.02|>": 50865,
|
104 |
-
"<|10.04|>": 50866,
|
105 |
-
"<|10.06|>": 50867,
|
106 |
-
"<|10.08|>": 50868,
|
107 |
-
"<|10.10|>": 50869,
|
108 |
-
"<|10.12|>": 50870,
|
109 |
-
"<|10.14|>": 50871,
|
110 |
-
"<|10.16|>": 50872,
|
111 |
-
"<|10.18|>": 50873,
|
112 |
-
"<|10.20|>": 50874,
|
113 |
-
"<|10.22|>": 50875,
|
114 |
-
"<|10.24|>": 50876,
|
115 |
-
"<|10.26|>": 50877,
|
116 |
-
"<|10.28|>": 50878,
|
117 |
-
"<|10.30|>": 50879,
|
118 |
-
"<|10.32|>": 50880,
|
119 |
-
"<|10.34|>": 50881,
|
120 |
-
"<|10.36|>": 50882,
|
121 |
-
"<|10.38|>": 50883,
|
122 |
-
"<|10.40|>": 50884,
|
123 |
-
"<|10.42|>": 50885,
|
124 |
-
"<|10.44|>": 50886,
|
125 |
-
"<|10.46|>": 50887,
|
126 |
-
"<|10.48|>": 50888,
|
127 |
-
"<|10.50|>": 50889,
|
128 |
-
"<|10.52|>": 50890,
|
129 |
-
"<|10.54|>": 50891,
|
130 |
-
"<|10.56|>": 50892,
|
131 |
-
"<|10.58|>": 50893,
|
132 |
-
"<|10.60|>": 50894,
|
133 |
-
"<|10.62|>": 50895,
|
134 |
-
"<|10.64|>": 50896,
|
135 |
-
"<|10.66|>": 50897,
|
136 |
-
"<|10.68|>": 50898,
|
137 |
-
"<|10.70|>": 50899,
|
138 |
-
"<|10.72|>": 50900,
|
139 |
-
"<|10.74|>": 50901,
|
140 |
-
"<|10.76|>": 50902,
|
141 |
-
"<|10.78|>": 50903,
|
142 |
-
"<|10.80|>": 50904,
|
143 |
-
"<|10.82|>": 50905,
|
144 |
-
"<|10.84|>": 50906,
|
145 |
-
"<|10.86|>": 50907,
|
146 |
-
"<|10.88|>": 50908,
|
147 |
-
"<|10.90|>": 50909,
|
148 |
-
"<|10.92|>": 50910,
|
149 |
-
"<|10.94|>": 50911,
|
150 |
-
"<|10.96|>": 50912,
|
151 |
-
"<|10.98|>": 50913,
|
152 |
-
"<|11.00|>": 50914,
|
153 |
-
"<|11.02|>": 50915,
|
154 |
-
"<|11.04|>": 50916,
|
155 |
-
"<|11.06|>": 50917,
|
156 |
-
"<|11.08|>": 50918,
|
157 |
-
"<|11.10|>": 50919,
|
158 |
-
"<|11.12|>": 50920,
|
159 |
-
"<|11.14|>": 50921,
|
160 |
-
"<|11.16|>": 50922,
|
161 |
-
"<|11.18|>": 50923,
|
162 |
-
"<|11.20|>": 50924,
|
163 |
-
"<|11.22|>": 50925,
|
164 |
-
"<|11.24|>": 50926,
|
165 |
-
"<|11.26|>": 50927,
|
166 |
-
"<|11.28|>": 50928,
|
167 |
-
"<|11.30|>": 50929,
|
168 |
-
"<|11.32|>": 50930,
|
169 |
-
"<|11.34|>": 50931,
|
170 |
-
"<|11.36|>": 50932,
|
171 |
-
"<|11.38|>": 50933,
|
172 |
-
"<|11.40|>": 50934,
|
173 |
-
"<|11.42|>": 50935,
|
174 |
-
"<|11.44|>": 50936,
|
175 |
-
"<|11.46|>": 50937,
|
176 |
-
"<|11.48|>": 50938,
|
177 |
-
"<|11.50|>": 50939,
|
178 |
-
"<|11.52|>": 50940,
|
179 |
-
"<|11.54|>": 50941,
|
180 |
-
"<|11.56|>": 50942,
|
181 |
-
"<|11.58|>": 50943,
|
182 |
-
"<|11.60|>": 50944,
|
183 |
-
"<|11.62|>": 50945,
|
184 |
-
"<|11.64|>": 50946,
|
185 |
-
"<|11.66|>": 50947,
|
186 |
-
"<|11.68|>": 50948,
|
187 |
-
"<|11.70|>": 50949,
|
188 |
-
"<|11.72|>": 50950,
|
189 |
-
"<|11.74|>": 50951,
|
190 |
-
"<|11.76|>": 50952,
|
191 |
-
"<|11.78|>": 50953,
|
192 |
-
"<|11.80|>": 50954,
|
193 |
-
"<|11.82|>": 50955,
|
194 |
-
"<|11.84|>": 50956,
|
195 |
-
"<|11.86|>": 50957,
|
196 |
-
"<|11.88|>": 50958,
|
197 |
-
"<|11.90|>": 50959,
|
198 |
-
"<|11.92|>": 50960,
|
199 |
-
"<|11.94|>": 50961,
|
200 |
-
"<|11.96|>": 50962,
|
201 |
-
"<|11.98|>": 50963,
|
202 |
-
"<|12.00|>": 50964,
|
203 |
-
"<|12.02|>": 50965,
|
204 |
-
"<|12.04|>": 50966,
|
205 |
-
"<|12.06|>": 50967,
|
206 |
-
"<|12.08|>": 50968,
|
207 |
-
"<|12.10|>": 50969,
|
208 |
-
"<|12.12|>": 50970,
|
209 |
-
"<|12.14|>": 50971,
|
210 |
-
"<|12.16|>": 50972,
|
211 |
-
"<|12.18|>": 50973,
|
212 |
-
"<|12.20|>": 50974,
|
213 |
-
"<|12.22|>": 50975,
|
214 |
-
"<|12.24|>": 50976,
|
215 |
-
"<|12.26|>": 50977,
|
216 |
-
"<|12.28|>": 50978,
|
217 |
-
"<|12.30|>": 50979,
|
218 |
-
"<|12.32|>": 50980,
|
219 |
-
"<|12.34|>": 50981,
|
220 |
-
"<|12.36|>": 50982,
|
221 |
-
"<|12.38|>": 50983,
|
222 |
-
"<|12.40|>": 50984,
|
223 |
-
"<|12.42|>": 50985,
|
224 |
-
"<|12.44|>": 50986,
|
225 |
-
"<|12.46|>": 50987,
|
226 |
-
"<|12.48|>": 50988,
|
227 |
-
"<|12.50|>": 50989,
|
228 |
-
"<|12.52|>": 50990,
|
229 |
-
"<|12.54|>": 50991,
|
230 |
-
"<|12.56|>": 50992,
|
231 |
-
"<|12.58|>": 50993,
|
232 |
-
"<|12.60|>": 50994,
|
233 |
-
"<|12.62|>": 50995,
|
234 |
-
"<|12.64|>": 50996,
|
235 |
-
"<|12.66|>": 50997,
|
236 |
-
"<|12.68|>": 50998,
|
237 |
-
"<|12.70|>": 50999,
|
238 |
-
"<|12.72|>": 51000,
|
239 |
-
"<|12.74|>": 51001,
|
240 |
-
"<|12.76|>": 51002,
|
241 |
-
"<|12.78|>": 51003,
|
242 |
-
"<|12.80|>": 51004,
|
243 |
-
"<|12.82|>": 51005,
|
244 |
-
"<|12.84|>": 51006,
|
245 |
-
"<|12.86|>": 51007,
|
246 |
-
"<|12.88|>": 51008,
|
247 |
-
"<|12.90|>": 51009,
|
248 |
-
"<|12.92|>": 51010,
|
249 |
-
"<|12.94|>": 51011,
|
250 |
-
"<|12.96|>": 51012,
|
251 |
-
"<|12.98|>": 51013,
|
252 |
-
"<|13.00|>": 51014,
|
253 |
-
"<|13.02|>": 51015,
|
254 |
-
"<|13.04|>": 51016,
|
255 |
-
"<|13.06|>": 51017,
|
256 |
-
"<|13.08|>": 51018,
|
257 |
-
"<|13.10|>": 51019,
|
258 |
-
"<|13.12|>": 51020,
|
259 |
-
"<|13.14|>": 51021,
|
260 |
-
"<|13.16|>": 51022,
|
261 |
-
"<|13.18|>": 51023,
|
262 |
-
"<|13.20|>": 51024,
|
263 |
-
"<|13.22|>": 51025,
|
264 |
-
"<|13.24|>": 51026,
|
265 |
-
"<|13.26|>": 51027,
|
266 |
-
"<|13.28|>": 51028,
|
267 |
-
"<|13.30|>": 51029,
|
268 |
-
"<|13.32|>": 51030,
|
269 |
-
"<|13.34|>": 51031,
|
270 |
-
"<|13.36|>": 51032,
|
271 |
-
"<|13.38|>": 51033,
|
272 |
-
"<|13.40|>": 51034,
|
273 |
-
"<|13.42|>": 51035,
|
274 |
-
"<|13.44|>": 51036,
|
275 |
-
"<|13.46|>": 51037,
|
276 |
-
"<|13.48|>": 51038,
|
277 |
-
"<|13.50|>": 51039,
|
278 |
-
"<|13.52|>": 51040,
|
279 |
-
"<|13.54|>": 51041,
|
280 |
-
"<|13.56|>": 51042,
|
281 |
-
"<|13.58|>": 51043,
|
282 |
-
"<|13.60|>": 51044,
|
283 |
-
"<|13.62|>": 51045,
|
284 |
-
"<|13.64|>": 51046,
|
285 |
-
"<|13.66|>": 51047,
|
286 |
-
"<|13.68|>": 51048,
|
287 |
-
"<|13.70|>": 51049,
|
288 |
-
"<|13.72|>": 51050,
|
289 |
-
"<|13.74|>": 51051,
|
290 |
-
"<|13.76|>": 51052,
|
291 |
-
"<|13.78|>": 51053,
|
292 |
-
"<|13.80|>": 51054,
|
293 |
-
"<|13.82|>": 51055,
|
294 |
-
"<|13.84|>": 51056,
|
295 |
-
"<|13.86|>": 51057,
|
296 |
-
"<|13.88|>": 51058,
|
297 |
-
"<|13.90|>": 51059,
|
298 |
-
"<|13.92|>": 51060,
|
299 |
-
"<|13.94|>": 51061,
|
300 |
-
"<|13.96|>": 51062,
|
301 |
-
"<|13.98|>": 51063,
|
302 |
-
"<|14.00|>": 51064,
|
303 |
-
"<|14.02|>": 51065,
|
304 |
-
"<|14.04|>": 51066,
|
305 |
-
"<|14.06|>": 51067,
|
306 |
-
"<|14.08|>": 51068,
|
307 |
-
"<|14.10|>": 51069,
|
308 |
-
"<|14.12|>": 51070,
|
309 |
-
"<|14.14|>": 51071,
|
310 |
-
"<|14.16|>": 51072,
|
311 |
-
"<|14.18|>": 51073,
|
312 |
-
"<|14.20|>": 51074,
|
313 |
-
"<|14.22|>": 51075,
|
314 |
-
"<|14.24|>": 51076,
|
315 |
-
"<|14.26|>": 51077,
|
316 |
-
"<|14.28|>": 51078,
|
317 |
-
"<|14.30|>": 51079,
|
318 |
-
"<|14.32|>": 51080,
|
319 |
-
"<|14.34|>": 51081,
|
320 |
-
"<|14.36|>": 51082,
|
321 |
-
"<|14.38|>": 51083,
|
322 |
-
"<|14.40|>": 51084,
|
323 |
-
"<|14.42|>": 51085,
|
324 |
-
"<|14.44|>": 51086,
|
325 |
-
"<|14.46|>": 51087,
|
326 |
-
"<|14.48|>": 51088,
|
327 |
-
"<|14.50|>": 51089,
|
328 |
-
"<|14.52|>": 51090,
|
329 |
-
"<|14.54|>": 51091,
|
330 |
-
"<|14.56|>": 51092,
|
331 |
-
"<|14.58|>": 51093,
|
332 |
-
"<|14.60|>": 51094,
|
333 |
-
"<|14.62|>": 51095,
|
334 |
-
"<|14.64|>": 51096,
|
335 |
-
"<|14.66|>": 51097,
|
336 |
-
"<|14.68|>": 51098,
|
337 |
-
"<|14.70|>": 51099,
|
338 |
-
"<|14.72|>": 51100,
|
339 |
-
"<|14.74|>": 51101,
|
340 |
-
"<|14.76|>": 51102,
|
341 |
-
"<|14.78|>": 51103,
|
342 |
-
"<|14.80|>": 51104,
|
343 |
-
"<|14.82|>": 51105,
|
344 |
-
"<|14.84|>": 51106,
|
345 |
-
"<|14.86|>": 51107,
|
346 |
-
"<|14.88|>": 51108,
|
347 |
-
"<|14.90|>": 51109,
|
348 |
-
"<|14.92|>": 51110,
|
349 |
-
"<|14.94|>": 51111,
|
350 |
-
"<|14.96|>": 51112,
|
351 |
-
"<|14.98|>": 51113,
|
352 |
-
"<|15.00|>": 51114,
|
353 |
-
"<|15.02|>": 51115,
|
354 |
-
"<|15.04|>": 51116,
|
355 |
-
"<|15.06|>": 51117,
|
356 |
-
"<|15.08|>": 51118,
|
357 |
-
"<|15.10|>": 51119,
|
358 |
-
"<|15.12|>": 51120,
|
359 |
-
"<|15.14|>": 51121,
|
360 |
-
"<|15.16|>": 51122,
|
361 |
-
"<|15.18|>": 51123,
|
362 |
-
"<|15.20|>": 51124,
|
363 |
-
"<|15.22|>": 51125,
|
364 |
-
"<|15.24|>": 51126,
|
365 |
-
"<|15.26|>": 51127,
|
366 |
-
"<|15.28|>": 51128,
|
367 |
-
"<|15.30|>": 51129,
|
368 |
-
"<|15.32|>": 51130,
|
369 |
-
"<|15.34|>": 51131,
|
370 |
-
"<|15.36|>": 51132,
|
371 |
-
"<|15.38|>": 51133,
|
372 |
-
"<|15.40|>": 51134,
|
373 |
-
"<|15.42|>": 51135,
|
374 |
-
"<|15.44|>": 51136,
|
375 |
-
"<|15.46|>": 51137,
|
376 |
-
"<|15.48|>": 51138,
|
377 |
-
"<|15.50|>": 51139,
|
378 |
-
"<|15.52|>": 51140,
|
379 |
-
"<|15.54|>": 51141,
|
380 |
-
"<|15.56|>": 51142,
|
381 |
-
"<|15.58|>": 51143,
|
382 |
-
"<|15.60|>": 51144,
|
383 |
-
"<|15.62|>": 51145,
|
384 |
-
"<|15.64|>": 51146,
|
385 |
-
"<|15.66|>": 51147,
|
386 |
-
"<|15.68|>": 51148,
|
387 |
-
"<|15.70|>": 51149,
|
388 |
-
"<|15.72|>": 51150,
|
389 |
-
"<|15.74|>": 51151,
|
390 |
-
"<|15.76|>": 51152,
|
391 |
-
"<|15.78|>": 51153,
|
392 |
-
"<|15.80|>": 51154,
|
393 |
-
"<|15.82|>": 51155,
|
394 |
-
"<|15.84|>": 51156,
|
395 |
-
"<|15.86|>": 51157,
|
396 |
-
"<|15.88|>": 51158,
|
397 |
-
"<|15.90|>": 51159,
|
398 |
-
"<|15.92|>": 51160,
|
399 |
-
"<|15.94|>": 51161,
|
400 |
-
"<|15.96|>": 51162,
|
401 |
-
"<|15.98|>": 51163,
|
402 |
-
"<|16.00|>": 51164,
|
403 |
-
"<|16.02|>": 51165,
|
404 |
-
"<|16.04|>": 51166,
|
405 |
-
"<|16.06|>": 51167,
|
406 |
-
"<|16.08|>": 51168,
|
407 |
-
"<|16.10|>": 51169,
|
408 |
-
"<|16.12|>": 51170,
|
409 |
-
"<|16.14|>": 51171,
|
410 |
-
"<|16.16|>": 51172,
|
411 |
-
"<|16.18|>": 51173,
|
412 |
-
"<|16.20|>": 51174,
|
413 |
-
"<|16.22|>": 51175,
|
414 |
-
"<|16.24|>": 51176,
|
415 |
-
"<|16.26|>": 51177,
|
416 |
-
"<|16.28|>": 51178,
|
417 |
-
"<|16.30|>": 51179,
|
418 |
-
"<|16.32|>": 51180,
|
419 |
-
"<|16.34|>": 51181,
|
420 |
-
"<|16.36|>": 51182,
|
421 |
-
"<|16.38|>": 51183,
|
422 |
-
"<|16.40|>": 51184,
|
423 |
-
"<|16.42|>": 51185,
|
424 |
-
"<|16.44|>": 51186,
|
425 |
-
"<|16.46|>": 51187,
|
426 |
-
"<|16.48|>": 51188,
|
427 |
-
"<|16.50|>": 51189,
|
428 |
-
"<|16.52|>": 51190,
|
429 |
-
"<|16.54|>": 51191,
|
430 |
-
"<|16.56|>": 51192,
|
431 |
-
"<|16.58|>": 51193,
|
432 |
-
"<|16.60|>": 51194,
|
433 |
-
"<|16.62|>": 51195,
|
434 |
-
"<|16.64|>": 51196,
|
435 |
-
"<|16.66|>": 51197,
|
436 |
-
"<|16.68|>": 51198,
|
437 |
-
"<|16.70|>": 51199,
|
438 |
-
"<|16.72|>": 51200,
|
439 |
-
"<|16.74|>": 51201,
|
440 |
-
"<|16.76|>": 51202,
|
441 |
-
"<|16.78|>": 51203,
|
442 |
-
"<|16.80|>": 51204,
|
443 |
-
"<|16.82|>": 51205,
|
444 |
-
"<|16.84|>": 51206,
|
445 |
-
"<|16.86|>": 51207,
|
446 |
-
"<|16.88|>": 51208,
|
447 |
-
"<|16.90|>": 51209,
|
448 |
-
"<|16.92|>": 51210,
|
449 |
-
"<|16.94|>": 51211,
|
450 |
-
"<|16.96|>": 51212,
|
451 |
-
"<|16.98|>": 51213,
|
452 |
-
"<|17.00|>": 51214,
|
453 |
-
"<|17.02|>": 51215,
|
454 |
-
"<|17.04|>": 51216,
|
455 |
-
"<|17.06|>": 51217,
|
456 |
-
"<|17.08|>": 51218,
|
457 |
-
"<|17.10|>": 51219,
|
458 |
-
"<|17.12|>": 51220,
|
459 |
-
"<|17.14|>": 51221,
|
460 |
-
"<|17.16|>": 51222,
|
461 |
-
"<|17.18|>": 51223,
|
462 |
-
"<|17.20|>": 51224,
|
463 |
-
"<|17.22|>": 51225,
|
464 |
-
"<|17.24|>": 51226,
|
465 |
-
"<|17.26|>": 51227,
|
466 |
-
"<|17.28|>": 51228,
|
467 |
-
"<|17.30|>": 51229,
|
468 |
-
"<|17.32|>": 51230,
|
469 |
-
"<|17.34|>": 51231,
|
470 |
-
"<|17.36|>": 51232,
|
471 |
-
"<|17.38|>": 51233,
|
472 |
-
"<|17.40|>": 51234,
|
473 |
-
"<|17.42|>": 51235,
|
474 |
-
"<|17.44|>": 51236,
|
475 |
-
"<|17.46|>": 51237,
|
476 |
-
"<|17.48|>": 51238,
|
477 |
-
"<|17.50|>": 51239,
|
478 |
-
"<|17.52|>": 51240,
|
479 |
-
"<|17.54|>": 51241,
|
480 |
-
"<|17.56|>": 51242,
|
481 |
-
"<|17.58|>": 51243,
|
482 |
-
"<|17.60|>": 51244,
|
483 |
-
"<|17.62|>": 51245,
|
484 |
-
"<|17.64|>": 51246,
|
485 |
-
"<|17.66|>": 51247,
|
486 |
-
"<|17.68|>": 51248,
|
487 |
-
"<|17.70|>": 51249,
|
488 |
-
"<|17.72|>": 51250,
|
489 |
-
"<|17.74|>": 51251,
|
490 |
-
"<|17.76|>": 51252,
|
491 |
-
"<|17.78|>": 51253,
|
492 |
-
"<|17.80|>": 51254,
|
493 |
-
"<|17.82|>": 51255,
|
494 |
-
"<|17.84|>": 51256,
|
495 |
-
"<|17.86|>": 51257,
|
496 |
-
"<|17.88|>": 51258,
|
497 |
-
"<|17.90|>": 51259,
|
498 |
-
"<|17.92|>": 51260,
|
499 |
-
"<|17.94|>": 51261,
|
500 |
-
"<|17.96|>": 51262,
|
501 |
-
"<|17.98|>": 51263,
|
502 |
-
"<|18.00|>": 51264,
|
503 |
-
"<|18.02|>": 51265,
|
504 |
-
"<|18.04|>": 51266,
|
505 |
-
"<|18.06|>": 51267,
|
506 |
-
"<|18.08|>": 51268,
|
507 |
-
"<|18.10|>": 51269,
|
508 |
-
"<|18.12|>": 51270,
|
509 |
-
"<|18.14|>": 51271,
|
510 |
-
"<|18.16|>": 51272,
|
511 |
-
"<|18.18|>": 51273,
|
512 |
-
"<|18.20|>": 51274,
|
513 |
-
"<|18.22|>": 51275,
|
514 |
-
"<|18.24|>": 51276,
|
515 |
-
"<|18.26|>": 51277,
|
516 |
-
"<|18.28|>": 51278,
|
517 |
-
"<|18.30|>": 51279,
|
518 |
-
"<|18.32|>": 51280,
|
519 |
-
"<|18.34|>": 51281,
|
520 |
-
"<|18.36|>": 51282,
|
521 |
-
"<|18.38|>": 51283,
|
522 |
-
"<|18.40|>": 51284,
|
523 |
-
"<|18.42|>": 51285,
|
524 |
-
"<|18.44|>": 51286,
|
525 |
-
"<|18.46|>": 51287,
|
526 |
-
"<|18.48|>": 51288,
|
527 |
-
"<|18.50|>": 51289,
|
528 |
-
"<|18.52|>": 51290,
|
529 |
-
"<|18.54|>": 51291,
|
530 |
-
"<|18.56|>": 51292,
|
531 |
-
"<|18.58|>": 51293,
|
532 |
-
"<|18.60|>": 51294,
|
533 |
-
"<|18.62|>": 51295,
|
534 |
-
"<|18.64|>": 51296,
|
535 |
-
"<|18.66|>": 51297,
|
536 |
-
"<|18.68|>": 51298,
|
537 |
-
"<|18.70|>": 51299,
|
538 |
-
"<|18.72|>": 51300,
|
539 |
-
"<|18.74|>": 51301,
|
540 |
-
"<|18.76|>": 51302,
|
541 |
-
"<|18.78|>": 51303,
|
542 |
-
"<|18.80|>": 51304,
|
543 |
-
"<|18.82|>": 51305,
|
544 |
-
"<|18.84|>": 51306,
|
545 |
-
"<|18.86|>": 51307,
|
546 |
-
"<|18.88|>": 51308,
|
547 |
-
"<|18.90|>": 51309,
|
548 |
-
"<|18.92|>": 51310,
|
549 |
-
"<|18.94|>": 51311,
|
550 |
-
"<|18.96|>": 51312,
|
551 |
-
"<|18.98|>": 51313,
|
552 |
-
"<|19.00|>": 51314,
|
553 |
-
"<|19.02|>": 51315,
|
554 |
-
"<|19.04|>": 51316,
|
555 |
-
"<|19.06|>": 51317,
|
556 |
-
"<|19.08|>": 51318,
|
557 |
-
"<|19.10|>": 51319,
|
558 |
-
"<|19.12|>": 51320,
|
559 |
-
"<|19.14|>": 51321,
|
560 |
-
"<|19.16|>": 51322,
|
561 |
-
"<|19.18|>": 51323,
|
562 |
-
"<|19.20|>": 51324,
|
563 |
-
"<|19.22|>": 51325,
|
564 |
-
"<|19.24|>": 51326,
|
565 |
-
"<|19.26|>": 51327,
|
566 |
-
"<|19.28|>": 51328,
|
567 |
-
"<|19.30|>": 51329,
|
568 |
-
"<|19.32|>": 51330,
|
569 |
-
"<|19.34|>": 51331,
|
570 |
-
"<|19.36|>": 51332,
|
571 |
-
"<|19.38|>": 51333,
|
572 |
-
"<|19.40|>": 51334,
|
573 |
-
"<|19.42|>": 51335,
|
574 |
-
"<|19.44|>": 51336,
|
575 |
-
"<|19.46|>": 51337,
|
576 |
-
"<|19.48|>": 51338,
|
577 |
-
"<|19.50|>": 51339,
|
578 |
-
"<|19.52|>": 51340,
|
579 |
-
"<|19.54|>": 51341,
|
580 |
-
"<|19.56|>": 51342,
|
581 |
-
"<|19.58|>": 51343,
|
582 |
-
"<|19.60|>": 51344,
|
583 |
-
"<|19.62|>": 51345,
|
584 |
-
"<|19.64|>": 51346,
|
585 |
-
"<|19.66|>": 51347,
|
586 |
-
"<|19.68|>": 51348,
|
587 |
-
"<|19.70|>": 51349,
|
588 |
-
"<|19.72|>": 51350,
|
589 |
-
"<|19.74|>": 51351,
|
590 |
-
"<|19.76|>": 51352,
|
591 |
-
"<|19.78|>": 51353,
|
592 |
-
"<|19.80|>": 51354,
|
593 |
-
"<|19.82|>": 51355,
|
594 |
-
"<|19.84|>": 51356,
|
595 |
-
"<|19.86|>": 51357,
|
596 |
-
"<|19.88|>": 51358,
|
597 |
-
"<|19.90|>": 51359,
|
598 |
-
"<|19.92|>": 51360,
|
599 |
-
"<|19.94|>": 51361,
|
600 |
-
"<|19.96|>": 51362,
|
601 |
-
"<|19.98|>": 51363,
|
602 |
-
"<|2.00|>": 50464,
|
603 |
-
"<|2.02|>": 50465,
|
604 |
-
"<|2.04|>": 50466,
|
605 |
-
"<|2.06|>": 50467,
|
606 |
-
"<|2.08|>": 50468,
|
607 |
-
"<|2.10|>": 50469,
|
608 |
-
"<|2.12|>": 50470,
|
609 |
-
"<|2.14|>": 50471,
|
610 |
-
"<|2.16|>": 50472,
|
611 |
-
"<|2.18|>": 50473,
|
612 |
-
"<|2.20|>": 50474,
|
613 |
-
"<|2.22|>": 50475,
|
614 |
-
"<|2.24|>": 50476,
|
615 |
-
"<|2.26|>": 50477,
|
616 |
-
"<|2.28|>": 50478,
|
617 |
-
"<|2.30|>": 50479,
|
618 |
-
"<|2.32|>": 50480,
|
619 |
-
"<|2.34|>": 50481,
|
620 |
-
"<|2.36|>": 50482,
|
621 |
-
"<|2.38|>": 50483,
|
622 |
-
"<|2.40|>": 50484,
|
623 |
-
"<|2.42|>": 50485,
|
624 |
-
"<|2.44|>": 50486,
|
625 |
-
"<|2.46|>": 50487,
|
626 |
-
"<|2.48|>": 50488,
|
627 |
-
"<|2.50|>": 50489,
|
628 |
-
"<|2.52|>": 50490,
|
629 |
-
"<|2.54|>": 50491,
|
630 |
-
"<|2.56|>": 50492,
|
631 |
-
"<|2.58|>": 50493,
|
632 |
-
"<|2.60|>": 50494,
|
633 |
-
"<|2.62|>": 50495,
|
634 |
-
"<|2.64|>": 50496,
|
635 |
-
"<|2.66|>": 50497,
|
636 |
-
"<|2.68|>": 50498,
|
637 |
-
"<|2.70|>": 50499,
|
638 |
-
"<|2.72|>": 50500,
|
639 |
-
"<|2.74|>": 50501,
|
640 |
-
"<|2.76|>": 50502,
|
641 |
-
"<|2.78|>": 50503,
|
642 |
-
"<|2.80|>": 50504,
|
643 |
-
"<|2.82|>": 50505,
|
644 |
-
"<|2.84|>": 50506,
|
645 |
-
"<|2.86|>": 50507,
|
646 |
-
"<|2.88|>": 50508,
|
647 |
-
"<|2.90|>": 50509,
|
648 |
-
"<|2.92|>": 50510,
|
649 |
-
"<|2.94|>": 50511,
|
650 |
-
"<|2.96|>": 50512,
|
651 |
-
"<|2.98|>": 50513,
|
652 |
-
"<|20.00|>": 51364,
|
653 |
-
"<|20.02|>": 51365,
|
654 |
-
"<|20.04|>": 51366,
|
655 |
-
"<|20.06|>": 51367,
|
656 |
-
"<|20.08|>": 51368,
|
657 |
-
"<|20.10|>": 51369,
|
658 |
-
"<|20.12|>": 51370,
|
659 |
-
"<|20.14|>": 51371,
|
660 |
-
"<|20.16|>": 51372,
|
661 |
-
"<|20.18|>": 51373,
|
662 |
-
"<|20.20|>": 51374,
|
663 |
-
"<|20.22|>": 51375,
|
664 |
-
"<|20.24|>": 51376,
|
665 |
-
"<|20.26|>": 51377,
|
666 |
-
"<|20.28|>": 51378,
|
667 |
-
"<|20.30|>": 51379,
|
668 |
-
"<|20.32|>": 51380,
|
669 |
-
"<|20.34|>": 51381,
|
670 |
-
"<|20.36|>": 51382,
|
671 |
-
"<|20.38|>": 51383,
|
672 |
-
"<|20.40|>": 51384,
|
673 |
-
"<|20.42|>": 51385,
|
674 |
-
"<|20.44|>": 51386,
|
675 |
-
"<|20.46|>": 51387,
|
676 |
-
"<|20.48|>": 51388,
|
677 |
-
"<|20.50|>": 51389,
|
678 |
-
"<|20.52|>": 51390,
|
679 |
-
"<|20.54|>": 51391,
|
680 |
-
"<|20.56|>": 51392,
|
681 |
-
"<|20.58|>": 51393,
|
682 |
-
"<|20.60|>": 51394,
|
683 |
-
"<|20.62|>": 51395,
|
684 |
-
"<|20.64|>": 51396,
|
685 |
-
"<|20.66|>": 51397,
|
686 |
-
"<|20.68|>": 51398,
|
687 |
-
"<|20.70|>": 51399,
|
688 |
-
"<|20.72|>": 51400,
|
689 |
-
"<|20.74|>": 51401,
|
690 |
-
"<|20.76|>": 51402,
|
691 |
-
"<|20.78|>": 51403,
|
692 |
-
"<|20.80|>": 51404,
|
693 |
-
"<|20.82|>": 51405,
|
694 |
-
"<|20.84|>": 51406,
|
695 |
-
"<|20.86|>": 51407,
|
696 |
-
"<|20.88|>": 51408,
|
697 |
-
"<|20.90|>": 51409,
|
698 |
-
"<|20.92|>": 51410,
|
699 |
-
"<|20.94|>": 51411,
|
700 |
-
"<|20.96|>": 51412,
|
701 |
-
"<|20.98|>": 51413,
|
702 |
-
"<|21.00|>": 51414,
|
703 |
-
"<|21.02|>": 51415,
|
704 |
-
"<|21.04|>": 51416,
|
705 |
-
"<|21.06|>": 51417,
|
706 |
-
"<|21.08|>": 51418,
|
707 |
-
"<|21.10|>": 51419,
|
708 |
-
"<|21.12|>": 51420,
|
709 |
-
"<|21.14|>": 51421,
|
710 |
-
"<|21.16|>": 51422,
|
711 |
-
"<|21.18|>": 51423,
|
712 |
-
"<|21.20|>": 51424,
|
713 |
-
"<|21.22|>": 51425,
|
714 |
-
"<|21.24|>": 51426,
|
715 |
-
"<|21.26|>": 51427,
|
716 |
-
"<|21.28|>": 51428,
|
717 |
-
"<|21.30|>": 51429,
|
718 |
-
"<|21.32|>": 51430,
|
719 |
-
"<|21.34|>": 51431,
|
720 |
-
"<|21.36|>": 51432,
|
721 |
-
"<|21.38|>": 51433,
|
722 |
-
"<|21.40|>": 51434,
|
723 |
-
"<|21.42|>": 51435,
|
724 |
-
"<|21.44|>": 51436,
|
725 |
-
"<|21.46|>": 51437,
|
726 |
-
"<|21.48|>": 51438,
|
727 |
-
"<|21.50|>": 51439,
|
728 |
-
"<|21.52|>": 51440,
|
729 |
-
"<|21.54|>": 51441,
|
730 |
-
"<|21.56|>": 51442,
|
731 |
-
"<|21.58|>": 51443,
|
732 |
-
"<|21.60|>": 51444,
|
733 |
-
"<|21.62|>": 51445,
|
734 |
-
"<|21.64|>": 51446,
|
735 |
-
"<|21.66|>": 51447,
|
736 |
-
"<|21.68|>": 51448,
|
737 |
-
"<|21.70|>": 51449,
|
738 |
-
"<|21.72|>": 51450,
|
739 |
-
"<|21.74|>": 51451,
|
740 |
-
"<|21.76|>": 51452,
|
741 |
-
"<|21.78|>": 51453,
|
742 |
-
"<|21.80|>": 51454,
|
743 |
-
"<|21.82|>": 51455,
|
744 |
-
"<|21.84|>": 51456,
|
745 |
-
"<|21.86|>": 51457,
|
746 |
-
"<|21.88|>": 51458,
|
747 |
-
"<|21.90|>": 51459,
|
748 |
-
"<|21.92|>": 51460,
|
749 |
-
"<|21.94|>": 51461,
|
750 |
-
"<|21.96|>": 51462,
|
751 |
-
"<|21.98|>": 51463,
|
752 |
-
"<|22.00|>": 51464,
|
753 |
-
"<|22.02|>": 51465,
|
754 |
-
"<|22.04|>": 51466,
|
755 |
-
"<|22.06|>": 51467,
|
756 |
-
"<|22.08|>": 51468,
|
757 |
-
"<|22.10|>": 51469,
|
758 |
-
"<|22.12|>": 51470,
|
759 |
-
"<|22.14|>": 51471,
|
760 |
-
"<|22.16|>": 51472,
|
761 |
-
"<|22.18|>": 51473,
|
762 |
-
"<|22.20|>": 51474,
|
763 |
-
"<|22.22|>": 51475,
|
764 |
-
"<|22.24|>": 51476,
|
765 |
-
"<|22.26|>": 51477,
|
766 |
-
"<|22.28|>": 51478,
|
767 |
-
"<|22.30|>": 51479,
|
768 |
-
"<|22.32|>": 51480,
|
769 |
-
"<|22.34|>": 51481,
|
770 |
-
"<|22.36|>": 51482,
|
771 |
-
"<|22.38|>": 51483,
|
772 |
-
"<|22.40|>": 51484,
|
773 |
-
"<|22.42|>": 51485,
|
774 |
-
"<|22.44|>": 51486,
|
775 |
-
"<|22.46|>": 51487,
|
776 |
-
"<|22.48|>": 51488,
|
777 |
-
"<|22.50|>": 51489,
|
778 |
-
"<|22.52|>": 51490,
|
779 |
-
"<|22.54|>": 51491,
|
780 |
-
"<|22.56|>": 51492,
|
781 |
-
"<|22.58|>": 51493,
|
782 |
-
"<|22.60|>": 51494,
|
783 |
-
"<|22.62|>": 51495,
|
784 |
-
"<|22.64|>": 51496,
|
785 |
-
"<|22.66|>": 51497,
|
786 |
-
"<|22.68|>": 51498,
|
787 |
-
"<|22.70|>": 51499,
|
788 |
-
"<|22.72|>": 51500,
|
789 |
-
"<|22.74|>": 51501,
|
790 |
-
"<|22.76|>": 51502,
|
791 |
-
"<|22.78|>": 51503,
|
792 |
-
"<|22.80|>": 51504,
|
793 |
-
"<|22.82|>": 51505,
|
794 |
-
"<|22.84|>": 51506,
|
795 |
-
"<|22.86|>": 51507,
|
796 |
-
"<|22.88|>": 51508,
|
797 |
-
"<|22.90|>": 51509,
|
798 |
-
"<|22.92|>": 51510,
|
799 |
-
"<|22.94|>": 51511,
|
800 |
-
"<|22.96|>": 51512,
|
801 |
-
"<|22.98|>": 51513,
|
802 |
-
"<|23.00|>": 51514,
|
803 |
-
"<|23.02|>": 51515,
|
804 |
-
"<|23.04|>": 51516,
|
805 |
-
"<|23.06|>": 51517,
|
806 |
-
"<|23.08|>": 51518,
|
807 |
-
"<|23.10|>": 51519,
|
808 |
-
"<|23.12|>": 51520,
|
809 |
-
"<|23.14|>": 51521,
|
810 |
-
"<|23.16|>": 51522,
|
811 |
-
"<|23.18|>": 51523,
|
812 |
-
"<|23.20|>": 51524,
|
813 |
-
"<|23.22|>": 51525,
|
814 |
-
"<|23.24|>": 51526,
|
815 |
-
"<|23.26|>": 51527,
|
816 |
-
"<|23.28|>": 51528,
|
817 |
-
"<|23.30|>": 51529,
|
818 |
-
"<|23.32|>": 51530,
|
819 |
-
"<|23.34|>": 51531,
|
820 |
-
"<|23.36|>": 51532,
|
821 |
-
"<|23.38|>": 51533,
|
822 |
-
"<|23.40|>": 51534,
|
823 |
-
"<|23.42|>": 51535,
|
824 |
-
"<|23.44|>": 51536,
|
825 |
-
"<|23.46|>": 51537,
|
826 |
-
"<|23.48|>": 51538,
|
827 |
-
"<|23.50|>": 51539,
|
828 |
-
"<|23.52|>": 51540,
|
829 |
-
"<|23.54|>": 51541,
|
830 |
-
"<|23.56|>": 51542,
|
831 |
-
"<|23.58|>": 51543,
|
832 |
-
"<|23.60|>": 51544,
|
833 |
-
"<|23.62|>": 51545,
|
834 |
-
"<|23.64|>": 51546,
|
835 |
-
"<|23.66|>": 51547,
|
836 |
-
"<|23.68|>": 51548,
|
837 |
-
"<|23.70|>": 51549,
|
838 |
-
"<|23.72|>": 51550,
|
839 |
-
"<|23.74|>": 51551,
|
840 |
-
"<|23.76|>": 51552,
|
841 |
-
"<|23.78|>": 51553,
|
842 |
-
"<|23.80|>": 51554,
|
843 |
-
"<|23.82|>": 51555,
|
844 |
-
"<|23.84|>": 51556,
|
845 |
-
"<|23.86|>": 51557,
|
846 |
-
"<|23.88|>": 51558,
|
847 |
-
"<|23.90|>": 51559,
|
848 |
-
"<|23.92|>": 51560,
|
849 |
-
"<|23.94|>": 51561,
|
850 |
-
"<|23.96|>": 51562,
|
851 |
-
"<|23.98|>": 51563,
|
852 |
-
"<|24.00|>": 51564,
|
853 |
-
"<|24.02|>": 51565,
|
854 |
-
"<|24.04|>": 51566,
|
855 |
-
"<|24.06|>": 51567,
|
856 |
-
"<|24.08|>": 51568,
|
857 |
-
"<|24.10|>": 51569,
|
858 |
-
"<|24.12|>": 51570,
|
859 |
-
"<|24.14|>": 51571,
|
860 |
-
"<|24.16|>": 51572,
|
861 |
-
"<|24.18|>": 51573,
|
862 |
-
"<|24.20|>": 51574,
|
863 |
-
"<|24.22|>": 51575,
|
864 |
-
"<|24.24|>": 51576,
|
865 |
-
"<|24.26|>": 51577,
|
866 |
-
"<|24.28|>": 51578,
|
867 |
-
"<|24.30|>": 51579,
|
868 |
-
"<|24.32|>": 51580,
|
869 |
-
"<|24.34|>": 51581,
|
870 |
-
"<|24.36|>": 51582,
|
871 |
-
"<|24.38|>": 51583,
|
872 |
-
"<|24.40|>": 51584,
|
873 |
-
"<|24.42|>": 51585,
|
874 |
-
"<|24.44|>": 51586,
|
875 |
-
"<|24.46|>": 51587,
|
876 |
-
"<|24.48|>": 51588,
|
877 |
-
"<|24.50|>": 51589,
|
878 |
-
"<|24.52|>": 51590,
|
879 |
-
"<|24.54|>": 51591,
|
880 |
-
"<|24.56|>": 51592,
|
881 |
-
"<|24.58|>": 51593,
|
882 |
-
"<|24.60|>": 51594,
|
883 |
-
"<|24.62|>": 51595,
|
884 |
-
"<|24.64|>": 51596,
|
885 |
-
"<|24.66|>": 51597,
|
886 |
-
"<|24.68|>": 51598,
|
887 |
-
"<|24.70|>": 51599,
|
888 |
-
"<|24.72|>": 51600,
|
889 |
-
"<|24.74|>": 51601,
|
890 |
-
"<|24.76|>": 51602,
|
891 |
-
"<|24.78|>": 51603,
|
892 |
-
"<|24.80|>": 51604,
|
893 |
-
"<|24.82|>": 51605,
|
894 |
-
"<|24.84|>": 51606,
|
895 |
-
"<|24.86|>": 51607,
|
896 |
-
"<|24.88|>": 51608,
|
897 |
-
"<|24.90|>": 51609,
|
898 |
-
"<|24.92|>": 51610,
|
899 |
-
"<|24.94|>": 51611,
|
900 |
-
"<|24.96|>": 51612,
|
901 |
-
"<|24.98|>": 51613,
|
902 |
-
"<|25.00|>": 51614,
|
903 |
-
"<|25.02|>": 51615,
|
904 |
-
"<|25.04|>": 51616,
|
905 |
-
"<|25.06|>": 51617,
|
906 |
-
"<|25.08|>": 51618,
|
907 |
-
"<|25.10|>": 51619,
|
908 |
-
"<|25.12|>": 51620,
|
909 |
-
"<|25.14|>": 51621,
|
910 |
-
"<|25.16|>": 51622,
|
911 |
-
"<|25.18|>": 51623,
|
912 |
-
"<|25.20|>": 51624,
|
913 |
-
"<|25.22|>": 51625,
|
914 |
-
"<|25.24|>": 51626,
|
915 |
-
"<|25.26|>": 51627,
|
916 |
-
"<|25.28|>": 51628,
|
917 |
-
"<|25.30|>": 51629,
|
918 |
-
"<|25.32|>": 51630,
|
919 |
-
"<|25.34|>": 51631,
|
920 |
-
"<|25.36|>": 51632,
|
921 |
-
"<|25.38|>": 51633,
|
922 |
-
"<|25.40|>": 51634,
|
923 |
-
"<|25.42|>": 51635,
|
924 |
-
"<|25.44|>": 51636,
|
925 |
-
"<|25.46|>": 51637,
|
926 |
-
"<|25.48|>": 51638,
|
927 |
-
"<|25.50|>": 51639,
|
928 |
-
"<|25.52|>": 51640,
|
929 |
-
"<|25.54|>": 51641,
|
930 |
-
"<|25.56|>": 51642,
|
931 |
-
"<|25.58|>": 51643,
|
932 |
-
"<|25.60|>": 51644,
|
933 |
-
"<|25.62|>": 51645,
|
934 |
-
"<|25.64|>": 51646,
|
935 |
-
"<|25.66|>": 51647,
|
936 |
-
"<|25.68|>": 51648,
|
937 |
-
"<|25.70|>": 51649,
|
938 |
-
"<|25.72|>": 51650,
|
939 |
-
"<|25.74|>": 51651,
|
940 |
-
"<|25.76|>": 51652,
|
941 |
-
"<|25.78|>": 51653,
|
942 |
-
"<|25.80|>": 51654,
|
943 |
-
"<|25.82|>": 51655,
|
944 |
-
"<|25.84|>": 51656,
|
945 |
-
"<|25.86|>": 51657,
|
946 |
-
"<|25.88|>": 51658,
|
947 |
-
"<|25.90|>": 51659,
|
948 |
-
"<|25.92|>": 51660,
|
949 |
-
"<|25.94|>": 51661,
|
950 |
-
"<|25.96|>": 51662,
|
951 |
-
"<|25.98|>": 51663,
|
952 |
-
"<|26.00|>": 51664,
|
953 |
-
"<|26.02|>": 51665,
|
954 |
-
"<|26.04|>": 51666,
|
955 |
-
"<|26.06|>": 51667,
|
956 |
-
"<|26.08|>": 51668,
|
957 |
-
"<|26.10|>": 51669,
|
958 |
-
"<|26.12|>": 51670,
|
959 |
-
"<|26.14|>": 51671,
|
960 |
-
"<|26.16|>": 51672,
|
961 |
-
"<|26.18|>": 51673,
|
962 |
-
"<|26.20|>": 51674,
|
963 |
-
"<|26.22|>": 51675,
|
964 |
-
"<|26.24|>": 51676,
|
965 |
-
"<|26.26|>": 51677,
|
966 |
-
"<|26.28|>": 51678,
|
967 |
-
"<|26.30|>": 51679,
|
968 |
-
"<|26.32|>": 51680,
|
969 |
-
"<|26.34|>": 51681,
|
970 |
-
"<|26.36|>": 51682,
|
971 |
-
"<|26.38|>": 51683,
|
972 |
-
"<|26.40|>": 51684,
|
973 |
-
"<|26.42|>": 51685,
|
974 |
-
"<|26.44|>": 51686,
|
975 |
-
"<|26.46|>": 51687,
|
976 |
-
"<|26.48|>": 51688,
|
977 |
-
"<|26.50|>": 51689,
|
978 |
-
"<|26.52|>": 51690,
|
979 |
-
"<|26.54|>": 51691,
|
980 |
-
"<|26.56|>": 51692,
|
981 |
-
"<|26.58|>": 51693,
|
982 |
-
"<|26.60|>": 51694,
|
983 |
-
"<|26.62|>": 51695,
|
984 |
-
"<|26.64|>": 51696,
|
985 |
-
"<|26.66|>": 51697,
|
986 |
-
"<|26.68|>": 51698,
|
987 |
-
"<|26.70|>": 51699,
|
988 |
-
"<|26.72|>": 51700,
|
989 |
-
"<|26.74|>": 51701,
|
990 |
-
"<|26.76|>": 51702,
|
991 |
-
"<|26.78|>": 51703,
|
992 |
-
"<|26.80|>": 51704,
|
993 |
-
"<|26.82|>": 51705,
|
994 |
-
"<|26.84|>": 51706,
|
995 |
-
"<|26.86|>": 51707,
|
996 |
-
"<|26.88|>": 51708,
|
997 |
-
"<|26.90|>": 51709,
|
998 |
-
"<|26.92|>": 51710,
|
999 |
-
"<|26.94|>": 51711,
|
1000 |
-
"<|26.96|>": 51712,
|
1001 |
-
"<|26.98|>": 51713,
|
1002 |
-
"<|27.00|>": 51714,
|
1003 |
-
"<|27.02|>": 51715,
|
1004 |
-
"<|27.04|>": 51716,
|
1005 |
-
"<|27.06|>": 51717,
|
1006 |
-
"<|27.08|>": 51718,
|
1007 |
-
"<|27.10|>": 51719,
|
1008 |
-
"<|27.12|>": 51720,
|
1009 |
-
"<|27.14|>": 51721,
|
1010 |
-
"<|27.16|>": 51722,
|
1011 |
-
"<|27.18|>": 51723,
|
1012 |
-
"<|27.20|>": 51724,
|
1013 |
-
"<|27.22|>": 51725,
|
1014 |
-
"<|27.24|>": 51726,
|
1015 |
-
"<|27.26|>": 51727,
|
1016 |
-
"<|27.28|>": 51728,
|
1017 |
-
"<|27.30|>": 51729,
|
1018 |
-
"<|27.32|>": 51730,
|
1019 |
-
"<|27.34|>": 51731,
|
1020 |
-
"<|27.36|>": 51732,
|
1021 |
-
"<|27.38|>": 51733,
|
1022 |
-
"<|27.40|>": 51734,
|
1023 |
-
"<|27.42|>": 51735,
|
1024 |
-
"<|27.44|>": 51736,
|
1025 |
-
"<|27.46|>": 51737,
|
1026 |
-
"<|27.48|>": 51738,
|
1027 |
-
"<|27.50|>": 51739,
|
1028 |
-
"<|27.52|>": 51740,
|
1029 |
-
"<|27.54|>": 51741,
|
1030 |
-
"<|27.56|>": 51742,
|
1031 |
-
"<|27.58|>": 51743,
|
1032 |
-
"<|27.60|>": 51744,
|
1033 |
-
"<|27.62|>": 51745,
|
1034 |
-
"<|27.64|>": 51746,
|
1035 |
-
"<|27.66|>": 51747,
|
1036 |
-
"<|27.68|>": 51748,
|
1037 |
-
"<|27.70|>": 51749,
|
1038 |
-
"<|27.72|>": 51750,
|
1039 |
-
"<|27.74|>": 51751,
|
1040 |
-
"<|27.76|>": 51752,
|
1041 |
-
"<|27.78|>": 51753,
|
1042 |
-
"<|27.80|>": 51754,
|
1043 |
-
"<|27.82|>": 51755,
|
1044 |
-
"<|27.84|>": 51756,
|
1045 |
-
"<|27.86|>": 51757,
|
1046 |
-
"<|27.88|>": 51758,
|
1047 |
-
"<|27.90|>": 51759,
|
1048 |
-
"<|27.92|>": 51760,
|
1049 |
-
"<|27.94|>": 51761,
|
1050 |
-
"<|27.96|>": 51762,
|
1051 |
-
"<|27.98|>": 51763,
|
1052 |
-
"<|28.00|>": 51764,
|
1053 |
-
"<|28.02|>": 51765,
|
1054 |
-
"<|28.04|>": 51766,
|
1055 |
-
"<|28.06|>": 51767,
|
1056 |
-
"<|28.08|>": 51768,
|
1057 |
-
"<|28.10|>": 51769,
|
1058 |
-
"<|28.12|>": 51770,
|
1059 |
-
"<|28.14|>": 51771,
|
1060 |
-
"<|28.16|>": 51772,
|
1061 |
-
"<|28.18|>": 51773,
|
1062 |
-
"<|28.20|>": 51774,
|
1063 |
-
"<|28.22|>": 51775,
|
1064 |
-
"<|28.24|>": 51776,
|
1065 |
-
"<|28.26|>": 51777,
|
1066 |
-
"<|28.28|>": 51778,
|
1067 |
-
"<|28.30|>": 51779,
|
1068 |
-
"<|28.32|>": 51780,
|
1069 |
-
"<|28.34|>": 51781,
|
1070 |
-
"<|28.36|>": 51782,
|
1071 |
-
"<|28.38|>": 51783,
|
1072 |
-
"<|28.40|>": 51784,
|
1073 |
-
"<|28.42|>": 51785,
|
1074 |
-
"<|28.44|>": 51786,
|
1075 |
-
"<|28.46|>": 51787,
|
1076 |
-
"<|28.48|>": 51788,
|
1077 |
-
"<|28.50|>": 51789,
|
1078 |
-
"<|28.52|>": 51790,
|
1079 |
-
"<|28.54|>": 51791,
|
1080 |
-
"<|28.56|>": 51792,
|
1081 |
-
"<|28.58|>": 51793,
|
1082 |
-
"<|28.60|>": 51794,
|
1083 |
-
"<|28.62|>": 51795,
|
1084 |
-
"<|28.64|>": 51796,
|
1085 |
-
"<|28.66|>": 51797,
|
1086 |
-
"<|28.68|>": 51798,
|
1087 |
-
"<|28.70|>": 51799,
|
1088 |
-
"<|28.72|>": 51800,
|
1089 |
-
"<|28.74|>": 51801,
|
1090 |
-
"<|28.76|>": 51802,
|
1091 |
-
"<|28.78|>": 51803,
|
1092 |
-
"<|28.80|>": 51804,
|
1093 |
-
"<|28.82|>": 51805,
|
1094 |
-
"<|28.84|>": 51806,
|
1095 |
-
"<|28.86|>": 51807,
|
1096 |
-
"<|28.88|>": 51808,
|
1097 |
-
"<|28.90|>": 51809,
|
1098 |
-
"<|28.92|>": 51810,
|
1099 |
-
"<|28.94|>": 51811,
|
1100 |
-
"<|28.96|>": 51812,
|
1101 |
-
"<|28.98|>": 51813,
|
1102 |
-
"<|29.00|>": 51814,
|
1103 |
-
"<|29.02|>": 51815,
|
1104 |
-
"<|29.04|>": 51816,
|
1105 |
-
"<|29.06|>": 51817,
|
1106 |
-
"<|29.08|>": 51818,
|
1107 |
-
"<|29.10|>": 51819,
|
1108 |
-
"<|29.12|>": 51820,
|
1109 |
-
"<|29.14|>": 51821,
|
1110 |
-
"<|29.16|>": 51822,
|
1111 |
-
"<|29.18|>": 51823,
|
1112 |
-
"<|29.20|>": 51824,
|
1113 |
-
"<|29.22|>": 51825,
|
1114 |
-
"<|29.24|>": 51826,
|
1115 |
-
"<|29.26|>": 51827,
|
1116 |
-
"<|29.28|>": 51828,
|
1117 |
-
"<|29.30|>": 51829,
|
1118 |
-
"<|29.32|>": 51830,
|
1119 |
-
"<|29.34|>": 51831,
|
1120 |
-
"<|29.36|>": 51832,
|
1121 |
-
"<|29.38|>": 51833,
|
1122 |
-
"<|29.40|>": 51834,
|
1123 |
-
"<|29.42|>": 51835,
|
1124 |
-
"<|29.44|>": 51836,
|
1125 |
-
"<|29.46|>": 51837,
|
1126 |
-
"<|29.48|>": 51838,
|
1127 |
-
"<|29.50|>": 51839,
|
1128 |
-
"<|29.52|>": 51840,
|
1129 |
-
"<|29.54|>": 51841,
|
1130 |
-
"<|29.56|>": 51842,
|
1131 |
-
"<|29.58|>": 51843,
|
1132 |
-
"<|29.60|>": 51844,
|
1133 |
-
"<|29.62|>": 51845,
|
1134 |
-
"<|29.64|>": 51846,
|
1135 |
-
"<|29.66|>": 51847,
|
1136 |
-
"<|29.68|>": 51848,
|
1137 |
-
"<|29.70|>": 51849,
|
1138 |
-
"<|29.72|>": 51850,
|
1139 |
-
"<|29.74|>": 51851,
|
1140 |
-
"<|29.76|>": 51852,
|
1141 |
-
"<|29.78|>": 51853,
|
1142 |
-
"<|29.80|>": 51854,
|
1143 |
-
"<|29.82|>": 51855,
|
1144 |
-
"<|29.84|>": 51856,
|
1145 |
-
"<|29.86|>": 51857,
|
1146 |
-
"<|29.88|>": 51858,
|
1147 |
-
"<|29.90|>": 51859,
|
1148 |
-
"<|29.92|>": 51860,
|
1149 |
-
"<|29.94|>": 51861,
|
1150 |
-
"<|29.96|>": 51862,
|
1151 |
-
"<|29.98|>": 51863,
|
1152 |
-
"<|3.00|>": 50514,
|
1153 |
-
"<|3.02|>": 50515,
|
1154 |
-
"<|3.04|>": 50516,
|
1155 |
-
"<|3.06|>": 50517,
|
1156 |
-
"<|3.08|>": 50518,
|
1157 |
-
"<|3.10|>": 50519,
|
1158 |
-
"<|3.12|>": 50520,
|
1159 |
-
"<|3.14|>": 50521,
|
1160 |
-
"<|3.16|>": 50522,
|
1161 |
-
"<|3.18|>": 50523,
|
1162 |
-
"<|3.20|>": 50524,
|
1163 |
-
"<|3.22|>": 50525,
|
1164 |
-
"<|3.24|>": 50526,
|
1165 |
-
"<|3.26|>": 50527,
|
1166 |
-
"<|3.28|>": 50528,
|
1167 |
-
"<|3.30|>": 50529,
|
1168 |
-
"<|3.32|>": 50530,
|
1169 |
-
"<|3.34|>": 50531,
|
1170 |
-
"<|3.36|>": 50532,
|
1171 |
-
"<|3.38|>": 50533,
|
1172 |
-
"<|3.40|>": 50534,
|
1173 |
-
"<|3.42|>": 50535,
|
1174 |
-
"<|3.44|>": 50536,
|
1175 |
-
"<|3.46|>": 50537,
|
1176 |
-
"<|3.48|>": 50538,
|
1177 |
-
"<|3.50|>": 50539,
|
1178 |
-
"<|3.52|>": 50540,
|
1179 |
-
"<|3.54|>": 50541,
|
1180 |
-
"<|3.56|>": 50542,
|
1181 |
-
"<|3.58|>": 50543,
|
1182 |
-
"<|3.60|>": 50544,
|
1183 |
-
"<|3.62|>": 50545,
|
1184 |
-
"<|3.64|>": 50546,
|
1185 |
-
"<|3.66|>": 50547,
|
1186 |
-
"<|3.68|>": 50548,
|
1187 |
-
"<|3.70|>": 50549,
|
1188 |
-
"<|3.72|>": 50550,
|
1189 |
-
"<|3.74|>": 50551,
|
1190 |
-
"<|3.76|>": 50552,
|
1191 |
-
"<|3.78|>": 50553,
|
1192 |
-
"<|3.80|>": 50554,
|
1193 |
-
"<|3.82|>": 50555,
|
1194 |
-
"<|3.84|>": 50556,
|
1195 |
-
"<|3.86|>": 50557,
|
1196 |
-
"<|3.88|>": 50558,
|
1197 |
-
"<|3.90|>": 50559,
|
1198 |
-
"<|3.92|>": 50560,
|
1199 |
-
"<|3.94|>": 50561,
|
1200 |
-
"<|3.96|>": 50562,
|
1201 |
-
"<|3.98|>": 50563,
|
1202 |
-
"<|30.00|>": 51864,
|
1203 |
-
"<|4.00|>": 50564,
|
1204 |
-
"<|4.02|>": 50565,
|
1205 |
-
"<|4.04|>": 50566,
|
1206 |
-
"<|4.06|>": 50567,
|
1207 |
-
"<|4.08|>": 50568,
|
1208 |
-
"<|4.10|>": 50569,
|
1209 |
-
"<|4.12|>": 50570,
|
1210 |
-
"<|4.14|>": 50571,
|
1211 |
-
"<|4.16|>": 50572,
|
1212 |
-
"<|4.18|>": 50573,
|
1213 |
-
"<|4.20|>": 50574,
|
1214 |
-
"<|4.22|>": 50575,
|
1215 |
-
"<|4.24|>": 50576,
|
1216 |
-
"<|4.26|>": 50577,
|
1217 |
-
"<|4.28|>": 50578,
|
1218 |
-
"<|4.30|>": 50579,
|
1219 |
-
"<|4.32|>": 50580,
|
1220 |
-
"<|4.34|>": 50581,
|
1221 |
-
"<|4.36|>": 50582,
|
1222 |
-
"<|4.38|>": 50583,
|
1223 |
-
"<|4.40|>": 50584,
|
1224 |
-
"<|4.42|>": 50585,
|
1225 |
-
"<|4.44|>": 50586,
|
1226 |
-
"<|4.46|>": 50587,
|
1227 |
-
"<|4.48|>": 50588,
|
1228 |
-
"<|4.50|>": 50589,
|
1229 |
-
"<|4.52|>": 50590,
|
1230 |
-
"<|4.54|>": 50591,
|
1231 |
-
"<|4.56|>": 50592,
|
1232 |
-
"<|4.58|>": 50593,
|
1233 |
-
"<|4.60|>": 50594,
|
1234 |
-
"<|4.62|>": 50595,
|
1235 |
-
"<|4.64|>": 50596,
|
1236 |
-
"<|4.66|>": 50597,
|
1237 |
-
"<|4.68|>": 50598,
|
1238 |
-
"<|4.70|>": 50599,
|
1239 |
-
"<|4.72|>": 50600,
|
1240 |
-
"<|4.74|>": 50601,
|
1241 |
-
"<|4.76|>": 50602,
|
1242 |
-
"<|4.78|>": 50603,
|
1243 |
-
"<|4.80|>": 50604,
|
1244 |
-
"<|4.82|>": 50605,
|
1245 |
-
"<|4.84|>": 50606,
|
1246 |
-
"<|4.86|>": 50607,
|
1247 |
-
"<|4.88|>": 50608,
|
1248 |
-
"<|4.90|>": 50609,
|
1249 |
-
"<|4.92|>": 50610,
|
1250 |
-
"<|4.94|>": 50611,
|
1251 |
-
"<|4.96|>": 50612,
|
1252 |
-
"<|4.98|>": 50613,
|
1253 |
-
"<|5.00|>": 50614,
|
1254 |
-
"<|5.02|>": 50615,
|
1255 |
-
"<|5.04|>": 50616,
|
1256 |
-
"<|5.06|>": 50617,
|
1257 |
-
"<|5.08|>": 50618,
|
1258 |
-
"<|5.10|>": 50619,
|
1259 |
-
"<|5.12|>": 50620,
|
1260 |
-
"<|5.14|>": 50621,
|
1261 |
-
"<|5.16|>": 50622,
|
1262 |
-
"<|5.18|>": 50623,
|
1263 |
-
"<|5.20|>": 50624,
|
1264 |
-
"<|5.22|>": 50625,
|
1265 |
-
"<|5.24|>": 50626,
|
1266 |
-
"<|5.26|>": 50627,
|
1267 |
-
"<|5.28|>": 50628,
|
1268 |
-
"<|5.30|>": 50629,
|
1269 |
-
"<|5.32|>": 50630,
|
1270 |
-
"<|5.34|>": 50631,
|
1271 |
-
"<|5.36|>": 50632,
|
1272 |
-
"<|5.38|>": 50633,
|
1273 |
-
"<|5.40|>": 50634,
|
1274 |
-
"<|5.42|>": 50635,
|
1275 |
-
"<|5.44|>": 50636,
|
1276 |
-
"<|5.46|>": 50637,
|
1277 |
-
"<|5.48|>": 50638,
|
1278 |
-
"<|5.50|>": 50639,
|
1279 |
-
"<|5.52|>": 50640,
|
1280 |
-
"<|5.54|>": 50641,
|
1281 |
-
"<|5.56|>": 50642,
|
1282 |
-
"<|5.58|>": 50643,
|
1283 |
-
"<|5.60|>": 50644,
|
1284 |
-
"<|5.62|>": 50645,
|
1285 |
-
"<|5.64|>": 50646,
|
1286 |
-
"<|5.66|>": 50647,
|
1287 |
-
"<|5.68|>": 50648,
|
1288 |
-
"<|5.70|>": 50649,
|
1289 |
-
"<|5.72|>": 50650,
|
1290 |
-
"<|5.74|>": 50651,
|
1291 |
-
"<|5.76|>": 50652,
|
1292 |
-
"<|5.78|>": 50653,
|
1293 |
-
"<|5.80|>": 50654,
|
1294 |
-
"<|5.82|>": 50655,
|
1295 |
-
"<|5.84|>": 50656,
|
1296 |
-
"<|5.86|>": 50657,
|
1297 |
-
"<|5.88|>": 50658,
|
1298 |
-
"<|5.90|>": 50659,
|
1299 |
-
"<|5.92|>": 50660,
|
1300 |
-
"<|5.94|>": 50661,
|
1301 |
-
"<|5.96|>": 50662,
|
1302 |
-
"<|5.98|>": 50663,
|
1303 |
-
"<|6.00|>": 50664,
|
1304 |
-
"<|6.02|>": 50665,
|
1305 |
-
"<|6.04|>": 50666,
|
1306 |
-
"<|6.06|>": 50667,
|
1307 |
-
"<|6.08|>": 50668,
|
1308 |
-
"<|6.10|>": 50669,
|
1309 |
-
"<|6.12|>": 50670,
|
1310 |
-
"<|6.14|>": 50671,
|
1311 |
-
"<|6.16|>": 50672,
|
1312 |
-
"<|6.18|>": 50673,
|
1313 |
-
"<|6.20|>": 50674,
|
1314 |
-
"<|6.22|>": 50675,
|
1315 |
-
"<|6.24|>": 50676,
|
1316 |
-
"<|6.26|>": 50677,
|
1317 |
-
"<|6.28|>": 50678,
|
1318 |
-
"<|6.30|>": 50679,
|
1319 |
-
"<|6.32|>": 50680,
|
1320 |
-
"<|6.34|>": 50681,
|
1321 |
-
"<|6.36|>": 50682,
|
1322 |
-
"<|6.38|>": 50683,
|
1323 |
-
"<|6.40|>": 50684,
|
1324 |
-
"<|6.42|>": 50685,
|
1325 |
-
"<|6.44|>": 50686,
|
1326 |
-
"<|6.46|>": 50687,
|
1327 |
-
"<|6.48|>": 50688,
|
1328 |
-
"<|6.50|>": 50689,
|
1329 |
-
"<|6.52|>": 50690,
|
1330 |
-
"<|6.54|>": 50691,
|
1331 |
-
"<|6.56|>": 50692,
|
1332 |
-
"<|6.58|>": 50693,
|
1333 |
-
"<|6.60|>": 50694,
|
1334 |
-
"<|6.62|>": 50695,
|
1335 |
-
"<|6.64|>": 50696,
|
1336 |
-
"<|6.66|>": 50697,
|
1337 |
-
"<|6.68|>": 50698,
|
1338 |
-
"<|6.70|>": 50699,
|
1339 |
-
"<|6.72|>": 50700,
|
1340 |
-
"<|6.74|>": 50701,
|
1341 |
-
"<|6.76|>": 50702,
|
1342 |
-
"<|6.78|>": 50703,
|
1343 |
-
"<|6.80|>": 50704,
|
1344 |
-
"<|6.82|>": 50705,
|
1345 |
-
"<|6.84|>": 50706,
|
1346 |
-
"<|6.86|>": 50707,
|
1347 |
-
"<|6.88|>": 50708,
|
1348 |
-
"<|6.90|>": 50709,
|
1349 |
-
"<|6.92|>": 50710,
|
1350 |
-
"<|6.94|>": 50711,
|
1351 |
-
"<|6.96|>": 50712,
|
1352 |
-
"<|6.98|>": 50713,
|
1353 |
-
"<|7.00|>": 50714,
|
1354 |
-
"<|7.02|>": 50715,
|
1355 |
-
"<|7.04|>": 50716,
|
1356 |
-
"<|7.06|>": 50717,
|
1357 |
-
"<|7.08|>": 50718,
|
1358 |
-
"<|7.10|>": 50719,
|
1359 |
-
"<|7.12|>": 50720,
|
1360 |
-
"<|7.14|>": 50721,
|
1361 |
-
"<|7.16|>": 50722,
|
1362 |
-
"<|7.18|>": 50723,
|
1363 |
-
"<|7.20|>": 50724,
|
1364 |
-
"<|7.22|>": 50725,
|
1365 |
-
"<|7.24|>": 50726,
|
1366 |
-
"<|7.26|>": 50727,
|
1367 |
-
"<|7.28|>": 50728,
|
1368 |
-
"<|7.30|>": 50729,
|
1369 |
-
"<|7.32|>": 50730,
|
1370 |
-
"<|7.34|>": 50731,
|
1371 |
-
"<|7.36|>": 50732,
|
1372 |
-
"<|7.38|>": 50733,
|
1373 |
-
"<|7.40|>": 50734,
|
1374 |
-
"<|7.42|>": 50735,
|
1375 |
-
"<|7.44|>": 50736,
|
1376 |
-
"<|7.46|>": 50737,
|
1377 |
-
"<|7.48|>": 50738,
|
1378 |
-
"<|7.50|>": 50739,
|
1379 |
-
"<|7.52|>": 50740,
|
1380 |
-
"<|7.54|>": 50741,
|
1381 |
-
"<|7.56|>": 50742,
|
1382 |
-
"<|7.58|>": 50743,
|
1383 |
-
"<|7.60|>": 50744,
|
1384 |
-
"<|7.62|>": 50745,
|
1385 |
-
"<|7.64|>": 50746,
|
1386 |
-
"<|7.66|>": 50747,
|
1387 |
-
"<|7.68|>": 50748,
|
1388 |
-
"<|7.70|>": 50749,
|
1389 |
-
"<|7.72|>": 50750,
|
1390 |
-
"<|7.74|>": 50751,
|
1391 |
-
"<|7.76|>": 50752,
|
1392 |
-
"<|7.78|>": 50753,
|
1393 |
-
"<|7.80|>": 50754,
|
1394 |
-
"<|7.82|>": 50755,
|
1395 |
-
"<|7.84|>": 50756,
|
1396 |
-
"<|7.86|>": 50757,
|
1397 |
-
"<|7.88|>": 50758,
|
1398 |
-
"<|7.90|>": 50759,
|
1399 |
-
"<|7.92|>": 50760,
|
1400 |
-
"<|7.94|>": 50761,
|
1401 |
-
"<|7.96|>": 50762,
|
1402 |
-
"<|7.98|>": 50763,
|
1403 |
-
"<|8.00|>": 50764,
|
1404 |
-
"<|8.02|>": 50765,
|
1405 |
-
"<|8.04|>": 50766,
|
1406 |
-
"<|8.06|>": 50767,
|
1407 |
-
"<|8.08|>": 50768,
|
1408 |
-
"<|8.10|>": 50769,
|
1409 |
-
"<|8.12|>": 50770,
|
1410 |
-
"<|8.14|>": 50771,
|
1411 |
-
"<|8.16|>": 50772,
|
1412 |
-
"<|8.18|>": 50773,
|
1413 |
-
"<|8.20|>": 50774,
|
1414 |
-
"<|8.22|>": 50775,
|
1415 |
-
"<|8.24|>": 50776,
|
1416 |
-
"<|8.26|>": 50777,
|
1417 |
-
"<|8.28|>": 50778,
|
1418 |
-
"<|8.30|>": 50779,
|
1419 |
-
"<|8.32|>": 50780,
|
1420 |
-
"<|8.34|>": 50781,
|
1421 |
-
"<|8.36|>": 50782,
|
1422 |
-
"<|8.38|>": 50783,
|
1423 |
-
"<|8.40|>": 50784,
|
1424 |
-
"<|8.42|>": 50785,
|
1425 |
-
"<|8.44|>": 50786,
|
1426 |
-
"<|8.46|>": 50787,
|
1427 |
-
"<|8.48|>": 50788,
|
1428 |
-
"<|8.50|>": 50789,
|
1429 |
-
"<|8.52|>": 50790,
|
1430 |
-
"<|8.54|>": 50791,
|
1431 |
-
"<|8.56|>": 50792,
|
1432 |
-
"<|8.58|>": 50793,
|
1433 |
-
"<|8.60|>": 50794,
|
1434 |
-
"<|8.62|>": 50795,
|
1435 |
-
"<|8.64|>": 50796,
|
1436 |
-
"<|8.66|>": 50797,
|
1437 |
-
"<|8.68|>": 50798,
|
1438 |
-
"<|8.70|>": 50799,
|
1439 |
-
"<|8.72|>": 50800,
|
1440 |
-
"<|8.74|>": 50801,
|
1441 |
-
"<|8.76|>": 50802,
|
1442 |
-
"<|8.78|>": 50803,
|
1443 |
-
"<|8.80|>": 50804,
|
1444 |
-
"<|8.82|>": 50805,
|
1445 |
-
"<|8.84|>": 50806,
|
1446 |
-
"<|8.86|>": 50807,
|
1447 |
-
"<|8.88|>": 50808,
|
1448 |
-
"<|8.90|>": 50809,
|
1449 |
-
"<|8.92|>": 50810,
|
1450 |
-
"<|8.94|>": 50811,
|
1451 |
-
"<|8.96|>": 50812,
|
1452 |
-
"<|8.98|>": 50813,
|
1453 |
-
"<|9.00|>": 50814,
|
1454 |
-
"<|9.02|>": 50815,
|
1455 |
-
"<|9.04|>": 50816,
|
1456 |
-
"<|9.06|>": 50817,
|
1457 |
-
"<|9.08|>": 50818,
|
1458 |
-
"<|9.10|>": 50819,
|
1459 |
-
"<|9.12|>": 50820,
|
1460 |
-
"<|9.14|>": 50821,
|
1461 |
-
"<|9.16|>": 50822,
|
1462 |
-
"<|9.18|>": 50823,
|
1463 |
-
"<|9.20|>": 50824,
|
1464 |
-
"<|9.22|>": 50825,
|
1465 |
-
"<|9.24|>": 50826,
|
1466 |
-
"<|9.26|>": 50827,
|
1467 |
-
"<|9.28|>": 50828,
|
1468 |
-
"<|9.30|>": 50829,
|
1469 |
-
"<|9.32|>": 50830,
|
1470 |
-
"<|9.34|>": 50831,
|
1471 |
-
"<|9.36|>": 50832,
|
1472 |
-
"<|9.38|>": 50833,
|
1473 |
-
"<|9.40|>": 50834,
|
1474 |
-
"<|9.42|>": 50835,
|
1475 |
-
"<|9.44|>": 50836,
|
1476 |
-
"<|9.46|>": 50837,
|
1477 |
-
"<|9.48|>": 50838,
|
1478 |
-
"<|9.50|>": 50839,
|
1479 |
-
"<|9.52|>": 50840,
|
1480 |
-
"<|9.54|>": 50841,
|
1481 |
-
"<|9.56|>": 50842,
|
1482 |
-
"<|9.58|>": 50843,
|
1483 |
-
"<|9.60|>": 50844,
|
1484 |
-
"<|9.62|>": 50845,
|
1485 |
-
"<|9.64|>": 50846,
|
1486 |
-
"<|9.66|>": 50847,
|
1487 |
-
"<|9.68|>": 50848,
|
1488 |
-
"<|9.70|>": 50849,
|
1489 |
-
"<|9.72|>": 50850,
|
1490 |
-
"<|9.74|>": 50851,
|
1491 |
-
"<|9.76|>": 50852,
|
1492 |
-
"<|9.78|>": 50853,
|
1493 |
-
"<|9.80|>": 50854,
|
1494 |
-
"<|9.82|>": 50855,
|
1495 |
-
"<|9.84|>": 50856,
|
1496 |
-
"<|9.86|>": 50857,
|
1497 |
-
"<|9.88|>": 50858,
|
1498 |
-
"<|9.90|>": 50859,
|
1499 |
-
"<|9.92|>": 50860,
|
1500 |
-
"<|9.94|>": 50861,
|
1501 |
-
"<|9.96|>": 50862,
|
1502 |
-
"<|9.98|>": 50863,
|
1503 |
-
"<|af|>": 50327,
|
1504 |
-
"<|am|>": 50334,
|
1505 |
-
"<|ar|>": 50272,
|
1506 |
-
"<|as|>": 50350,
|
1507 |
-
"<|az|>": 50304,
|
1508 |
-
"<|ba|>": 50355,
|
1509 |
-
"<|be|>": 50330,
|
1510 |
-
"<|bg|>": 50292,
|
1511 |
-
"<|bn|>": 50302,
|
1512 |
-
"<|bo|>": 50347,
|
1513 |
-
"<|br|>": 50309,
|
1514 |
-
"<|bs|>": 50315,
|
1515 |
-
"<|ca|>": 50270,
|
1516 |
-
"<|cs|>": 50283,
|
1517 |
-
"<|cy|>": 50297,
|
1518 |
-
"<|da|>": 50285,
|
1519 |
-
"<|de|>": 50261,
|
1520 |
-
"<|el|>": 50281,
|
1521 |
-
"<|en|>": 50259,
|
1522 |
-
"<|es|>": 50262,
|
1523 |
-
"<|et|>": 50307,
|
1524 |
-
"<|eu|>": 50310,
|
1525 |
-
"<|fa|>": 50300,
|
1526 |
-
"<|fi|>": 50277,
|
1527 |
-
"<|fo|>": 50338,
|
1528 |
-
"<|fr|>": 50265,
|
1529 |
-
"<|gl|>": 50319,
|
1530 |
-
"<|gu|>": 50333,
|
1531 |
-
"<|haw|>": 50352,
|
1532 |
-
"<|ha|>": 50354,
|
1533 |
-
"<|he|>": 50279,
|
1534 |
-
"<|hi|>": 50276,
|
1535 |
-
"<|hr|>": 50291,
|
1536 |
-
"<|ht|>": 50339,
|
1537 |
-
"<|hu|>": 50286,
|
1538 |
-
"<|hy|>": 50312,
|
1539 |
-
"<|id|>": 50275,
|
1540 |
-
"<|is|>": 50311,
|
1541 |
-
"<|it|>": 50274,
|
1542 |
-
"<|ja|>": 50266,
|
1543 |
-
"<|jw|>": 50356,
|
1544 |
-
"<|ka|>": 50329,
|
1545 |
-
"<|kk|>": 50316,
|
1546 |
-
"<|km|>": 50323,
|
1547 |
-
"<|kn|>": 50306,
|
1548 |
-
"<|ko|>": 50264,
|
1549 |
-
"<|la|>": 50294,
|
1550 |
-
"<|lb|>": 50345,
|
1551 |
-
"<|ln|>": 50353,
|
1552 |
-
"<|lo|>": 50336,
|
1553 |
-
"<|lt|>": 50293,
|
1554 |
-
"<|lv|>": 50301,
|
1555 |
-
"<|mg|>": 50349,
|
1556 |
-
"<|mi|>": 50295,
|
1557 |
-
"<|mk|>": 50308,
|
1558 |
-
"<|ml|>": 50296,
|
1559 |
-
"<|mn|>": 50314,
|
1560 |
-
"<|mr|>": 50320,
|
1561 |
-
"<|ms|>": 50282,
|
1562 |
-
"<|mt|>": 50343,
|
1563 |
-
"<|my|>": 50346,
|
1564 |
-
"<|ne|>": 50313,
|
1565 |
-
"<|nl|>": 50271,
|
1566 |
-
"<|nn|>": 50342,
|
1567 |
-
"<|nocaptions|>": 50362,
|
1568 |
-
"<|notimestamps|>": 50363,
|
1569 |
-
"<|no|>": 50288,
|
1570 |
-
"<|oc|>": 50328,
|
1571 |
-
"<|pa|>": 50321,
|
1572 |
-
"<|pl|>": 50269,
|
1573 |
-
"<|ps|>": 50340,
|
1574 |
-
"<|pt|>": 50267,
|
1575 |
-
"<|ro|>": 50284,
|
1576 |
-
"<|ru|>": 50263,
|
1577 |
-
"<|sa|>": 50344,
|
1578 |
-
"<|sd|>": 50332,
|
1579 |
-
"<|si|>": 50322,
|
1580 |
-
"<|sk|>": 50298,
|
1581 |
-
"<|sl|>": 50305,
|
1582 |
-
"<|sn|>": 50324,
|
1583 |
-
"<|so|>": 50326,
|
1584 |
-
"<|sq|>": 50317,
|
1585 |
-
"<|sr|>": 50303,
|
1586 |
-
"<|startoflm|>": 50360,
|
1587 |
-
"<|startofprev|>": 50361,
|
1588 |
-
"<|startoftranscript|>": 50258,
|
1589 |
-
"<|su|>": 50357,
|
1590 |
-
"<|sv|>": 50273,
|
1591 |
-
"<|sw|>": 50318,
|
1592 |
-
"<|ta|>": 50287,
|
1593 |
-
"<|te|>": 50299,
|
1594 |
-
"<|tg|>": 50331,
|
1595 |
-
"<|th|>": 50289,
|
1596 |
-
"<|tk|>": 50341,
|
1597 |
-
"<|tl|>": 50348,
|
1598 |
-
"<|transcribe|>": 50359,
|
1599 |
-
"<|translate|>": 50358,
|
1600 |
-
"<|tr|>": 50268,
|
1601 |
-
"<|tt|>": 50351,
|
1602 |
-
"<|uk|>": 50280,
|
1603 |
-
"<|ur|>": 50290,
|
1604 |
-
"<|uz|>": 50337,
|
1605 |
-
"<|vi|>": 50278,
|
1606 |
-
"<|yi|>": 50335,
|
1607 |
-
"<|yo|>": 50325,
|
1608 |
-
"<|zh|>": 50260
|
1609 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SALMONN_PATHS/whisper-large-v2/config.json
DELETED
@@ -1,144 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"_name_or_path": "openai/whisper-large-v2",
|
3 |
-
"activation_dropout": 0.0,
|
4 |
-
"activation_function": "gelu",
|
5 |
-
"architectures": [
|
6 |
-
"WhisperForConditionalGeneration"
|
7 |
-
],
|
8 |
-
"attention_dropout": 0.0,
|
9 |
-
"begin_suppress_tokens": [
|
10 |
-
220,
|
11 |
-
50257
|
12 |
-
],
|
13 |
-
"bos_token_id": 50257,
|
14 |
-
"d_model": 1280,
|
15 |
-
"decoder_attention_heads": 20,
|
16 |
-
"decoder_ffn_dim": 5120,
|
17 |
-
"decoder_layerdrop": 0.0,
|
18 |
-
"decoder_layers": 32,
|
19 |
-
"decoder_start_token_id": 50258,
|
20 |
-
"dropout": 0.0,
|
21 |
-
"encoder_attention_heads": 20,
|
22 |
-
"encoder_ffn_dim": 5120,
|
23 |
-
"encoder_layerdrop": 0.0,
|
24 |
-
"encoder_layers": 32,
|
25 |
-
"eos_token_id": 50257,
|
26 |
-
"forced_decoder_ids": [
|
27 |
-
[
|
28 |
-
1,
|
29 |
-
50259
|
30 |
-
],
|
31 |
-
[
|
32 |
-
2,
|
33 |
-
50359
|
34 |
-
],
|
35 |
-
[
|
36 |
-
3,
|
37 |
-
50363
|
38 |
-
]
|
39 |
-
],
|
40 |
-
"init_std": 0.02,
|
41 |
-
"is_encoder_decoder": true,
|
42 |
-
"max_length": 448,
|
43 |
-
"max_source_positions": 1500,
|
44 |
-
"max_target_positions": 448,
|
45 |
-
"model_type": "whisper",
|
46 |
-
"num_hidden_layers": 32,
|
47 |
-
"num_mel_bins": 80,
|
48 |
-
"pad_token_id": 50257,
|
49 |
-
"scale_embedding": false,
|
50 |
-
"suppress_tokens": [
|
51 |
-
1,
|
52 |
-
2,
|
53 |
-
7,
|
54 |
-
8,
|
55 |
-
9,
|
56 |
-
10,
|
57 |
-
14,
|
58 |
-
25,
|
59 |
-
26,
|
60 |
-
27,
|
61 |
-
28,
|
62 |
-
29,
|
63 |
-
31,
|
64 |
-
58,
|
65 |
-
59,
|
66 |
-
60,
|
67 |
-
61,
|
68 |
-
62,
|
69 |
-
63,
|
70 |
-
90,
|
71 |
-
91,
|
72 |
-
92,
|
73 |
-
93,
|
74 |
-
359,
|
75 |
-
503,
|
76 |
-
522,
|
77 |
-
542,
|
78 |
-
873,
|
79 |
-
893,
|
80 |
-
902,
|
81 |
-
918,
|
82 |
-
922,
|
83 |
-
931,
|
84 |
-
1350,
|
85 |
-
1853,
|
86 |
-
1982,
|
87 |
-
2460,
|
88 |
-
2627,
|
89 |
-
3246,
|
90 |
-
3253,
|
91 |
-
3268,
|
92 |
-
3536,
|
93 |
-
3846,
|
94 |
-
3961,
|
95 |
-
4183,
|
96 |
-
4667,
|
97 |
-
6585,
|
98 |
-
6647,
|
99 |
-
7273,
|
100 |
-
9061,
|
101 |
-
9383,
|
102 |
-
10428,
|
103 |
-
10929,
|
104 |
-
11938,
|
105 |
-
12033,
|
106 |
-
12331,
|
107 |
-
12562,
|
108 |
-
13793,
|
109 |
-
14157,
|
110 |
-
14635,
|
111 |
-
15265,
|
112 |
-
15618,
|
113 |
-
16553,
|
114 |
-
16604,
|
115 |
-
18362,
|
116 |
-
18956,
|
117 |
-
20075,
|
118 |
-
21675,
|
119 |
-
22520,
|
120 |
-
26130,
|
121 |
-
26161,
|
122 |
-
26435,
|
123 |
-
28279,
|
124 |
-
29464,
|
125 |
-
31650,
|
126 |
-
32302,
|
127 |
-
32470,
|
128 |
-
36865,
|
129 |
-
42863,
|
130 |
-
47425,
|
131 |
-
49870,
|
132 |
-
50254,
|
133 |
-
50258,
|
134 |
-
50358,
|
135 |
-
50359,
|
136 |
-
50360,
|
137 |
-
50361,
|
138 |
-
50362
|
139 |
-
],
|
140 |
-
"torch_dtype": "float32",
|
141 |
-
"transformers_version": "4.27.0.dev0",
|
142 |
-
"use_cache": true,
|
143 |
-
"vocab_size": 51865
|
144 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SALMONN_PATHS/whisper-large-v2/flax_model.msgpack
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:232ca989cd2bc0830e0edf975e0475cdb3fea944c9eb9b56d923189adf19f8e3
|
3 |
-
size 6173264923
|
|
|
|
|
|
|
|
SALMONN_PATHS/whisper-large-v2/generation_config.json
DELETED
@@ -1,316 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"alignment_heads": [
|
3 |
-
[
|
4 |
-
10,
|
5 |
-
12
|
6 |
-
],
|
7 |
-
[
|
8 |
-
13,
|
9 |
-
17
|
10 |
-
],
|
11 |
-
[
|
12 |
-
16,
|
13 |
-
11
|
14 |
-
],
|
15 |
-
[
|
16 |
-
16,
|
17 |
-
12
|
18 |
-
],
|
19 |
-
[
|
20 |
-
16,
|
21 |
-
13
|
22 |
-
],
|
23 |
-
[
|
24 |
-
17,
|
25 |
-
15
|
26 |
-
],
|
27 |
-
[
|
28 |
-
17,
|
29 |
-
16
|
30 |
-
],
|
31 |
-
[
|
32 |
-
18,
|
33 |
-
4
|
34 |
-
],
|
35 |
-
[
|
36 |
-
18,
|
37 |
-
11
|
38 |
-
],
|
39 |
-
[
|
40 |
-
18,
|
41 |
-
19
|
42 |
-
],
|
43 |
-
[
|
44 |
-
19,
|
45 |
-
11
|
46 |
-
],
|
47 |
-
[
|
48 |
-
21,
|
49 |
-
2
|
50 |
-
],
|
51 |
-
[
|
52 |
-
21,
|
53 |
-
3
|
54 |
-
],
|
55 |
-
[
|
56 |
-
22,
|
57 |
-
3
|
58 |
-
],
|
59 |
-
[
|
60 |
-
22,
|
61 |
-
9
|
62 |
-
],
|
63 |
-
[
|
64 |
-
22,
|
65 |
-
12
|
66 |
-
],
|
67 |
-
[
|
68 |
-
23,
|
69 |
-
5
|
70 |
-
],
|
71 |
-
[
|
72 |
-
23,
|
73 |
-
7
|
74 |
-
],
|
75 |
-
[
|
76 |
-
23,
|
77 |
-
13
|
78 |
-
],
|
79 |
-
[
|
80 |
-
25,
|
81 |
-
5
|
82 |
-
],
|
83 |
-
[
|
84 |
-
26,
|
85 |
-
1
|
86 |
-
],
|
87 |
-
[
|
88 |
-
26,
|
89 |
-
12
|
90 |
-
],
|
91 |
-
[
|
92 |
-
27,
|
93 |
-
15
|
94 |
-
]
|
95 |
-
],
|
96 |
-
"begin_suppress_tokens": [
|
97 |
-
220,
|
98 |
-
50257
|
99 |
-
],
|
100 |
-
"bos_token_id": 50257,
|
101 |
-
"decoder_start_token_id": 50258,
|
102 |
-
"eos_token_id": 50257,
|
103 |
-
"forced_decoder_ids": [
|
104 |
-
[
|
105 |
-
1,
|
106 |
-
null
|
107 |
-
],
|
108 |
-
[
|
109 |
-
2,
|
110 |
-
50359
|
111 |
-
]
|
112 |
-
],
|
113 |
-
"is_multilingual": true,
|
114 |
-
"lang_to_id": {
|
115 |
-
"<|af|>": 50327,
|
116 |
-
"<|am|>": 50334,
|
117 |
-
"<|ar|>": 50272,
|
118 |
-
"<|as|>": 50350,
|
119 |
-
"<|az|>": 50304,
|
120 |
-
"<|ba|>": 50355,
|
121 |
-
"<|be|>": 50330,
|
122 |
-
"<|bg|>": 50292,
|
123 |
-
"<|bn|>": 50302,
|
124 |
-
"<|bo|>": 50347,
|
125 |
-
"<|br|>": 50309,
|
126 |
-
"<|bs|>": 50315,
|
127 |
-
"<|ca|>": 50270,
|
128 |
-
"<|cs|>": 50283,
|
129 |
-
"<|cy|>": 50297,
|
130 |
-
"<|da|>": 50285,
|
131 |
-
"<|de|>": 50261,
|
132 |
-
"<|el|>": 50281,
|
133 |
-
"<|en|>": 50259,
|
134 |
-
"<|es|>": 50262,
|
135 |
-
"<|et|>": 50307,
|
136 |
-
"<|eu|>": 50310,
|
137 |
-
"<|fa|>": 50300,
|
138 |
-
"<|fi|>": 50277,
|
139 |
-
"<|fo|>": 50338,
|
140 |
-
"<|fr|>": 50265,
|
141 |
-
"<|gl|>": 50319,
|
142 |
-
"<|gu|>": 50333,
|
143 |
-
"<|haw|>": 50352,
|
144 |
-
"<|ha|>": 50354,
|
145 |
-
"<|he|>": 50279,
|
146 |
-
"<|hi|>": 50276,
|
147 |
-
"<|hr|>": 50291,
|
148 |
-
"<|ht|>": 50339,
|
149 |
-
"<|hu|>": 50286,
|
150 |
-
"<|hy|>": 50312,
|
151 |
-
"<|id|>": 50275,
|
152 |
-
"<|is|>": 50311,
|
153 |
-
"<|it|>": 50274,
|
154 |
-
"<|ja|>": 50266,
|
155 |
-
"<|jw|>": 50356,
|
156 |
-
"<|ka|>": 50329,
|
157 |
-
"<|kk|>": 50316,
|
158 |
-
"<|km|>": 50323,
|
159 |
-
"<|kn|>": 50306,
|
160 |
-
"<|ko|>": 50264,
|
161 |
-
"<|la|>": 50294,
|
162 |
-
"<|lb|>": 50345,
|
163 |
-
"<|ln|>": 50353,
|
164 |
-
"<|lo|>": 50336,
|
165 |
-
"<|lt|>": 50293,
|
166 |
-
"<|lv|>": 50301,
|
167 |
-
"<|mg|>": 50349,
|
168 |
-
"<|mi|>": 50295,
|
169 |
-
"<|mk|>": 50308,
|
170 |
-
"<|ml|>": 50296,
|
171 |
-
"<|mn|>": 50314,
|
172 |
-
"<|mr|>": 50320,
|
173 |
-
"<|ms|>": 50282,
|
174 |
-
"<|mt|>": 50343,
|
175 |
-
"<|my|>": 50346,
|
176 |
-
"<|ne|>": 50313,
|
177 |
-
"<|nl|>": 50271,
|
178 |
-
"<|nn|>": 50342,
|
179 |
-
"<|no|>": 50288,
|
180 |
-
"<|oc|>": 50328,
|
181 |
-
"<|pa|>": 50321,
|
182 |
-
"<|pl|>": 50269,
|
183 |
-
"<|ps|>": 50340,
|
184 |
-
"<|pt|>": 50267,
|
185 |
-
"<|ro|>": 50284,
|
186 |
-
"<|ru|>": 50263,
|
187 |
-
"<|sa|>": 50344,
|
188 |
-
"<|sd|>": 50332,
|
189 |
-
"<|si|>": 50322,
|
190 |
-
"<|sk|>": 50298,
|
191 |
-
"<|sl|>": 50305,
|
192 |
-
"<|sn|>": 50324,
|
193 |
-
"<|so|>": 50326,
|
194 |
-
"<|sq|>": 50317,
|
195 |
-
"<|sr|>": 50303,
|
196 |
-
"<|su|>": 50357,
|
197 |
-
"<|sv|>": 50273,
|
198 |
-
"<|sw|>": 50318,
|
199 |
-
"<|ta|>": 50287,
|
200 |
-
"<|te|>": 50299,
|
201 |
-
"<|tg|>": 50331,
|
202 |
-
"<|th|>": 50289,
|
203 |
-
"<|tk|>": 50341,
|
204 |
-
"<|tl|>": 50348,
|
205 |
-
"<|tr|>": 50268,
|
206 |
-
"<|tt|>": 50351,
|
207 |
-
"<|uk|>": 50280,
|
208 |
-
"<|ur|>": 50290,
|
209 |
-
"<|uz|>": 50337,
|
210 |
-
"<|vi|>": 50278,
|
211 |
-
"<|yi|>": 50335,
|
212 |
-
"<|yo|>": 50325,
|
213 |
-
"<|zh|>": 50260
|
214 |
-
},
|
215 |
-
"max_initial_timestamp_index": 50,
|
216 |
-
"max_length": 448,
|
217 |
-
"no_timestamps_token_id": 50363,
|
218 |
-
"pad_token_id": 50257,
|
219 |
-
"prev_sot_token_id": 50361,
|
220 |
-
"return_timestamps": false,
|
221 |
-
"suppress_tokens": [
|
222 |
-
1,
|
223 |
-
2,
|
224 |
-
7,
|
225 |
-
8,
|
226 |
-
9,
|
227 |
-
10,
|
228 |
-
14,
|
229 |
-
25,
|
230 |
-
26,
|
231 |
-
27,
|
232 |
-
28,
|
233 |
-
29,
|
234 |
-
31,
|
235 |
-
58,
|
236 |
-
59,
|
237 |
-
60,
|
238 |
-
61,
|
239 |
-
62,
|
240 |
-
63,
|
241 |
-
90,
|
242 |
-
91,
|
243 |
-
92,
|
244 |
-
93,
|
245 |
-
359,
|
246 |
-
503,
|
247 |
-
522,
|
248 |
-
542,
|
249 |
-
873,
|
250 |
-
893,
|
251 |
-
902,
|
252 |
-
918,
|
253 |
-
922,
|
254 |
-
931,
|
255 |
-
1350,
|
256 |
-
1853,
|
257 |
-
1982,
|
258 |
-
2460,
|
259 |
-
2627,
|
260 |
-
3246,
|
261 |
-
3253,
|
262 |
-
3268,
|
263 |
-
3536,
|
264 |
-
3846,
|
265 |
-
3961,
|
266 |
-
4183,
|
267 |
-
4667,
|
268 |
-
6585,
|
269 |
-
6647,
|
270 |
-
7273,
|
271 |
-
9061,
|
272 |
-
9383,
|
273 |
-
10428,
|
274 |
-
10929,
|
275 |
-
11938,
|
276 |
-
12033,
|
277 |
-
12331,
|
278 |
-
12562,
|
279 |
-
13793,
|
280 |
-
14157,
|
281 |
-
14635,
|
282 |
-
15265,
|
283 |
-
15618,
|
284 |
-
16553,
|
285 |
-
16604,
|
286 |
-
18362,
|
287 |
-
18956,
|
288 |
-
20075,
|
289 |
-
21675,
|
290 |
-
22520,
|
291 |
-
26130,
|
292 |
-
26161,
|
293 |
-
26435,
|
294 |
-
28279,
|
295 |
-
29464,
|
296 |
-
31650,
|
297 |
-
32302,
|
298 |
-
32470,
|
299 |
-
36865,
|
300 |
-
42863,
|
301 |
-
47425,
|
302 |
-
49870,
|
303 |
-
50254,
|
304 |
-
50258,
|
305 |
-
50358,
|
306 |
-
50359,
|
307 |
-
50360,
|
308 |
-
50361,
|
309 |
-
50362
|
310 |
-
],
|
311 |
-
"task_to_id": {
|
312 |
-
"transcribe": 50359,
|
313 |
-
"translate": 50358
|
314 |
-
},
|
315 |
-
"transformers_version": "4.31.0.dev0"
|
316 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SALMONN_PATHS/whisper-large-v2/merges.txt
DELETED
The diff for this file is too large to render.
See raw diff
|
|
SALMONN_PATHS/whisper-large-v2/model.safetensors
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:57a1ba2a82c093cabff2541409ae778c97145378b9ddfa722763cb1cb8f9020b
|
3 |
-
size 6173370152
|
|
|
|
|
|
|
|
SALMONN_PATHS/whisper-large-v2/normalizer.json
DELETED
@@ -1,1742 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"accessorise": "accessorize",
|
3 |
-
"accessorised": "accessorized",
|
4 |
-
"accessorises": "accessorizes",
|
5 |
-
"accessorising": "accessorizing",
|
6 |
-
"acclimatisation": "acclimatization",
|
7 |
-
"acclimatise": "acclimatize",
|
8 |
-
"acclimatised": "acclimatized",
|
9 |
-
"acclimatises": "acclimatizes",
|
10 |
-
"acclimatising": "acclimatizing",
|
11 |
-
"accoutrements": "accouterments",
|
12 |
-
"aeon": "eon",
|
13 |
-
"aeons": "eons",
|
14 |
-
"aerogramme": "aerogram",
|
15 |
-
"aerogrammes": "aerograms",
|
16 |
-
"aeroplane": "airplane",
|
17 |
-
"aeroplanes": "airplanes",
|
18 |
-
"aesthete": "esthete",
|
19 |
-
"aesthetes": "esthetes",
|
20 |
-
"aesthetic": "esthetic",
|
21 |
-
"aesthetically": "esthetically",
|
22 |
-
"aesthetics": "esthetics",
|
23 |
-
"aetiology": "etiology",
|
24 |
-
"ageing": "aging",
|
25 |
-
"aggrandisement": "aggrandizement",
|
26 |
-
"agonise": "agonize",
|
27 |
-
"agonised": "agonized",
|
28 |
-
"agonises": "agonizes",
|
29 |
-
"agonising": "agonizing",
|
30 |
-
"agonisingly": "agonizingly",
|
31 |
-
"almanack": "almanac",
|
32 |
-
"almanacks": "almanacs",
|
33 |
-
"aluminium": "aluminum",
|
34 |
-
"amortisable": "amortizable",
|
35 |
-
"amortisation": "amortization",
|
36 |
-
"amortisations": "amortizations",
|
37 |
-
"amortise": "amortize",
|
38 |
-
"amortised": "amortized",
|
39 |
-
"amortises": "amortizes",
|
40 |
-
"amortising": "amortizing",
|
41 |
-
"amphitheatre": "amphitheater",
|
42 |
-
"amphitheatres": "amphitheaters",
|
43 |
-
"anaemia": "anemia",
|
44 |
-
"anaemic": "anemic",
|
45 |
-
"anaesthesia": "anesthesia",
|
46 |
-
"anaesthetic": "anesthetic",
|
47 |
-
"anaesthetics": "anesthetics",
|
48 |
-
"anaesthetise": "anesthetize",
|
49 |
-
"anaesthetised": "anesthetized",
|
50 |
-
"anaesthetises": "anesthetizes",
|
51 |
-
"anaesthetising": "anesthetizing",
|
52 |
-
"anaesthetist": "anesthetist",
|
53 |
-
"anaesthetists": "anesthetists",
|
54 |
-
"anaesthetize": "anesthetize",
|
55 |
-
"anaesthetized": "anesthetized",
|
56 |
-
"anaesthetizes": "anesthetizes",
|
57 |
-
"anaesthetizing": "anesthetizing",
|
58 |
-
"analogue": "analog",
|
59 |
-
"analogues": "analogs",
|
60 |
-
"analyse": "analyze",
|
61 |
-
"analysed": "analyzed",
|
62 |
-
"analyses": "analyzes",
|
63 |
-
"analysing": "analyzing",
|
64 |
-
"anglicise": "anglicize",
|
65 |
-
"anglicised": "anglicized",
|
66 |
-
"anglicises": "anglicizes",
|
67 |
-
"anglicising": "anglicizing",
|
68 |
-
"annualised": "annualized",
|
69 |
-
"antagonise": "antagonize",
|
70 |
-
"antagonised": "antagonized",
|
71 |
-
"antagonises": "antagonizes",
|
72 |
-
"antagonising": "antagonizing",
|
73 |
-
"apologise": "apologize",
|
74 |
-
"apologised": "apologized",
|
75 |
-
"apologises": "apologizes",
|
76 |
-
"apologising": "apologizing",
|
77 |
-
"appal": "appall",
|
78 |
-
"appals": "appalls",
|
79 |
-
"appetiser": "appetizer",
|
80 |
-
"appetisers": "appetizers",
|
81 |
-
"appetising": "appetizing",
|
82 |
-
"appetisingly": "appetizingly",
|
83 |
-
"arbour": "arbor",
|
84 |
-
"arbours": "arbors",
|
85 |
-
"archaeologically": "archeologically",
|
86 |
-
"archaeologist": "archeologist",
|
87 |
-
"archaeologists": "archeologists",
|
88 |
-
"archaeology": "archeology</span>",
|
89 |
-
"archeological": "archaeological",
|
90 |
-
"ardour": "ardor",
|
91 |
-
"armour": "armor",
|
92 |
-
"armoured": "armored",
|
93 |
-
"armourer": "armorer",
|
94 |
-
"armourers": "armorers",
|
95 |
-
"armouries": "armories",
|
96 |
-
"armoury": "armory",
|
97 |
-
"artefact": "artifact",
|
98 |
-
"artefacts": "artifacts",
|
99 |
-
"authorise": "authorize",
|
100 |
-
"authorised": "authorized",
|
101 |
-
"authorises": "authorizes",
|
102 |
-
"authorising": "authorizing",
|
103 |
-
"axe": "ax",
|
104 |
-
"backpedalled": "backpedaled",
|
105 |
-
"backpedalling": "backpedaling",
|
106 |
-
"bannister": "banister",
|
107 |
-
"bannisters": "banisters",
|
108 |
-
"baptise": "baptize",
|
109 |
-
"baptised": "baptized",
|
110 |
-
"baptises": "baptizes",
|
111 |
-
"baptising": "baptizing",
|
112 |
-
"bastardise": "bastardize",
|
113 |
-
"bastardised": "bastardized",
|
114 |
-
"bastardises": "bastardizes",
|
115 |
-
"bastardising": "bastardizing",
|
116 |
-
"battleax": "battleaxe",
|
117 |
-
"baulk": "balk",
|
118 |
-
"baulked": "balked",
|
119 |
-
"baulking": "balking",
|
120 |
-
"baulks": "balks",
|
121 |
-
"bedevilled": "bedeviled",
|
122 |
-
"bedevilling": "bedeviling",
|
123 |
-
"behaviour": "behavior",
|
124 |
-
"behavioural": "behavioral",
|
125 |
-
"behaviourism": "behaviorism",
|
126 |
-
"behaviourist": "behaviorist",
|
127 |
-
"behaviourists": "behaviorists",
|
128 |
-
"behaviours": "behaviors",
|
129 |
-
"behove": "behoove",
|
130 |
-
"behoved": "behooved",
|
131 |
-
"behoves": "behooves",
|
132 |
-
"bejewelled": "bejeweled",
|
133 |
-
"belabour": "belabor",
|
134 |
-
"belaboured": "belabored",
|
135 |
-
"belabouring": "belaboring",
|
136 |
-
"belabours": "belabors",
|
137 |
-
"bevelled": "beveled",
|
138 |
-
"bevvies": "bevies",
|
139 |
-
"bevvy": "bevy",
|
140 |
-
"biassed": "biased",
|
141 |
-
"biassing": "biasing",
|
142 |
-
"bingeing": "binging",
|
143 |
-
"bougainvillaea": "bougainvillea",
|
144 |
-
"bougainvillaeas": "bougainvilleas",
|
145 |
-
"bowdlerise": "bowdlerize",
|
146 |
-
"bowdlerised": "bowdlerized",
|
147 |
-
"bowdlerises": "bowdlerizes",
|
148 |
-
"bowdlerising": "bowdlerizing",
|
149 |
-
"breathalyse": "breathalyze",
|
150 |
-
"breathalysed": "breathalyzed",
|
151 |
-
"breathalyser": "breathalyzer",
|
152 |
-
"breathalysers": "breathalyzers",
|
153 |
-
"breathalyses": "breathalyzes",
|
154 |
-
"breathalysing": "breathalyzing",
|
155 |
-
"brutalise": "brutalize",
|
156 |
-
"brutalised": "brutalized",
|
157 |
-
"brutalises": "brutalizes",
|
158 |
-
"brutalising": "brutalizing",
|
159 |
-
"busses": "buses",
|
160 |
-
"bussing": "busing",
|
161 |
-
"caesarean": "cesarean",
|
162 |
-
"caesareans": "cesareans",
|
163 |
-
"calibre": "caliber",
|
164 |
-
"calibres": "calibers",
|
165 |
-
"calliper": "caliper",
|
166 |
-
"callipers": "calipers",
|
167 |
-
"callisthenics": "calisthenics",
|
168 |
-
"canalise": "canalize",
|
169 |
-
"canalised": "canalized",
|
170 |
-
"canalises": "canalizes",
|
171 |
-
"canalising": "canalizing",
|
172 |
-
"cancelation": "cancellation",
|
173 |
-
"cancelations": "cancellations",
|
174 |
-
"cancelled": "canceled",
|
175 |
-
"cancelling": "canceling",
|
176 |
-
"candour": "candor",
|
177 |
-
"cannibalise": "cannibalize",
|
178 |
-
"cannibalised": "cannibalized",
|
179 |
-
"cannibalises": "cannibalizes",
|
180 |
-
"cannibalising": "cannibalizing",
|
181 |
-
"canonise": "canonize",
|
182 |
-
"canonised": "canonized",
|
183 |
-
"canonises": "canonizes",
|
184 |
-
"canonising": "canonizing",
|
185 |
-
"capitalise": "capitalize",
|
186 |
-
"capitalised": "capitalized",
|
187 |
-
"capitalises": "capitalizes",
|
188 |
-
"capitalising": "capitalizing",
|
189 |
-
"caramelise": "caramelize",
|
190 |
-
"caramelised": "caramelized",
|
191 |
-
"caramelises": "caramelizes",
|
192 |
-
"caramelising": "caramelizing",
|
193 |
-
"carbonise": "carbonize",
|
194 |
-
"carbonised": "carbonized",
|
195 |
-
"carbonises": "carbonizes",
|
196 |
-
"carbonising": "carbonizing",
|
197 |
-
"carolled": "caroled",
|
198 |
-
"carolling": "caroling",
|
199 |
-
"catalogue": "catalog",
|
200 |
-
"catalogued": "cataloged",
|
201 |
-
"catalogues": "catalogs",
|
202 |
-
"cataloguing": "cataloging",
|
203 |
-
"catalyse": "catalyze",
|
204 |
-
"catalysed": "catalyzed",
|
205 |
-
"catalyses": "catalyzes",
|
206 |
-
"catalysing": "catalyzing",
|
207 |
-
"categorise": "categorize",
|
208 |
-
"categorised": "categorized",
|
209 |
-
"categorises": "categorizes",
|
210 |
-
"categorising": "categorizing",
|
211 |
-
"cauterise": "cauterize",
|
212 |
-
"cauterised": "cauterized",
|
213 |
-
"cauterises": "cauterizes",
|
214 |
-
"cauterising": "cauterizing",
|
215 |
-
"cavilled": "caviled",
|
216 |
-
"cavilling": "caviling",
|
217 |
-
"centigramme": "centigram",
|
218 |
-
"centigrammes": "centigrams",
|
219 |
-
"centilitre": "centiliter",
|
220 |
-
"centilitres": "centiliters",
|
221 |
-
"centimetre": "centimeter",
|
222 |
-
"centimetres": "centimeters",
|
223 |
-
"centralise": "centralize",
|
224 |
-
"centralised": "centralized",
|
225 |
-
"centralises": "centralizes",
|
226 |
-
"centralising": "centralizing",
|
227 |
-
"centre": "center",
|
228 |
-
"centred": "centered",
|
229 |
-
"centrefold": "centerfold",
|
230 |
-
"centrefolds": "centerfolds",
|
231 |
-
"centrepiece": "centerpiece",
|
232 |
-
"centrepieces": "centerpieces",
|
233 |
-
"centres": "centers",
|
234 |
-
"channelled": "channeled",
|
235 |
-
"channelling": "channeling",
|
236 |
-
"characterise": "characterize",
|
237 |
-
"characterised": "characterized",
|
238 |
-
"characterises": "characterizes",
|
239 |
-
"characterising": "characterizing",
|
240 |
-
"cheque": "check",
|
241 |
-
"chequebook": "checkbook",
|
242 |
-
"chequebooks": "checkbooks",
|
243 |
-
"chequered": "checkered",
|
244 |
-
"cheques": "checks",
|
245 |
-
"chilli": "chili",
|
246 |
-
"chimaera": "chimera",
|
247 |
-
"chimaeras": "chimeras",
|
248 |
-
"chiselled": "chiseled",
|
249 |
-
"chiselling": "chiseling",
|
250 |
-
"circularise": "circularize",
|
251 |
-
"circularised": "circularized",
|
252 |
-
"circularises": "circularizes",
|
253 |
-
"circularising": "circularizing",
|
254 |
-
"civilise": "civilize",
|
255 |
-
"civilised": "civilized",
|
256 |
-
"civilises": "civilizes",
|
257 |
-
"civilising": "civilizing",
|
258 |
-
"clamour": "clamor",
|
259 |
-
"clamoured": "clamored",
|
260 |
-
"clamouring": "clamoring",
|
261 |
-
"clamours": "clamors",
|
262 |
-
"clangour": "clangor",
|
263 |
-
"clarinettist": "clarinetist",
|
264 |
-
"clarinettists": "clarinetists",
|
265 |
-
"collectivise": "collectivize",
|
266 |
-
"collectivised": "collectivized",
|
267 |
-
"collectivises": "collectivizes",
|
268 |
-
"collectivising": "collectivizing",
|
269 |
-
"colonisation": "colonization",
|
270 |
-
"colonise": "colonize",
|
271 |
-
"colonised": "colonized",
|
272 |
-
"coloniser": "colonizer",
|
273 |
-
"colonisers": "colonizers",
|
274 |
-
"colonises": "colonizes",
|
275 |
-
"colonising": "colonizing",
|
276 |
-
"colour": "color",
|
277 |
-
"colourant": "colorant",
|
278 |
-
"colourants": "colorants",
|
279 |
-
"coloured": "colored",
|
280 |
-
"coloureds": "coloreds",
|
281 |
-
"colourful": "colorful",
|
282 |
-
"colourfully": "colorfully",
|
283 |
-
"colouring": "coloring",
|
284 |
-
"colourize": "colorize",
|
285 |
-
"colourized": "colorized",
|
286 |
-
"colourizes": "colorizes",
|
287 |
-
"colourizing": "colorizing",
|
288 |
-
"colourless": "colorless",
|
289 |
-
"colours": "colors",
|
290 |
-
"commercialise": "commercialize",
|
291 |
-
"commercialised": "commercialized",
|
292 |
-
"commercialises": "commercializes",
|
293 |
-
"commercialising": "commercializing",
|
294 |
-
"compartmentalise": "compartmentalize",
|
295 |
-
"compartmentalised": "compartmentalized",
|
296 |
-
"compartmentalises": "compartmentalizes",
|
297 |
-
"compartmentalising": "compartmentalizing",
|
298 |
-
"computerise": "computerize",
|
299 |
-
"computerised": "computerized",
|
300 |
-
"computerises": "computerizes",
|
301 |
-
"computerising": "computerizing",
|
302 |
-
"conceptualise": "conceptualize",
|
303 |
-
"conceptualised": "conceptualized",
|
304 |
-
"conceptualises": "conceptualizes",
|
305 |
-
"conceptualising": "conceptualizing",
|
306 |
-
"connexion": "connection",
|
307 |
-
"connexions": "connections",
|
308 |
-
"contextualise": "contextualize",
|
309 |
-
"contextualised": "contextualized",
|
310 |
-
"contextualises": "contextualizes",
|
311 |
-
"contextualising": "contextualizing",
|
312 |
-
"cosier": "cozier",
|
313 |
-
"cosies": "cozies",
|
314 |
-
"cosiest": "coziest",
|
315 |
-
"cosily": "cozily",
|
316 |
-
"cosiness": "coziness",
|
317 |
-
"cosy": "cozy",
|
318 |
-
"councillor": "councilor",
|
319 |
-
"councillors": "councilors",
|
320 |
-
"counselled": "counseled",
|
321 |
-
"counselling": "counseling",
|
322 |
-
"counsellor": "counselor",
|
323 |
-
"counsellors": "counselors",
|
324 |
-
"crenelated": "crenellated",
|
325 |
-
"criminalise": "criminalize",
|
326 |
-
"criminalised": "criminalized",
|
327 |
-
"criminalises": "criminalizes",
|
328 |
-
"criminalising": "criminalizing",
|
329 |
-
"criticise": "criticize",
|
330 |
-
"criticised": "criticized",
|
331 |
-
"criticises": "criticizes",
|
332 |
-
"criticising": "criticizing",
|
333 |
-
"crueller": "crueler",
|
334 |
-
"cruellest": "cruelest",
|
335 |
-
"crystallisation": "crystallization",
|
336 |
-
"crystallise": "crystallize",
|
337 |
-
"crystallised": "crystallized",
|
338 |
-
"crystallises": "crystallizes",
|
339 |
-
"crystallising": "crystallizing",
|
340 |
-
"cudgelled": "cudgeled",
|
341 |
-
"cudgelling": "cudgeling",
|
342 |
-
"customise": "customize",
|
343 |
-
"customised": "customized",
|
344 |
-
"customises": "customizes",
|
345 |
-
"customising": "customizing",
|
346 |
-
"cypher": "cipher",
|
347 |
-
"cyphers": "ciphers",
|
348 |
-
"decentralisation": "decentralization",
|
349 |
-
"decentralise": "decentralize",
|
350 |
-
"decentralised": "decentralized",
|
351 |
-
"decentralises": "decentralizes",
|
352 |
-
"decentralising": "decentralizing",
|
353 |
-
"decriminalisation": "decriminalization",
|
354 |
-
"decriminalise": "decriminalize",
|
355 |
-
"decriminalised": "decriminalized",
|
356 |
-
"decriminalises": "decriminalizes",
|
357 |
-
"decriminalising": "decriminalizing",
|
358 |
-
"defence": "defense",
|
359 |
-
"defenceless": "defenseless",
|
360 |
-
"defences": "defenses",
|
361 |
-
"dehumanisation": "dehumanization",
|
362 |
-
"dehumanise": "dehumanize",
|
363 |
-
"dehumanised": "dehumanized",
|
364 |
-
"dehumanises": "dehumanizes",
|
365 |
-
"dehumanising": "dehumanizing",
|
366 |
-
"demeanour": "demeanor",
|
367 |
-
"demilitarisation": "demilitarization",
|
368 |
-
"demilitarise": "demilitarize",
|
369 |
-
"demilitarised": "demilitarized",
|
370 |
-
"demilitarises": "demilitarizes",
|
371 |
-
"demilitarising": "demilitarizing",
|
372 |
-
"demobilisation": "demobilization",
|
373 |
-
"demobilise": "demobilize",
|
374 |
-
"demobilised": "demobilized",
|
375 |
-
"demobilises": "demobilizes",
|
376 |
-
"demobilising": "demobilizing",
|
377 |
-
"democratisation": "democratization",
|
378 |
-
"democratise": "democratize",
|
379 |
-
"democratised": "democratized",
|
380 |
-
"democratises": "democratizes",
|
381 |
-
"democratising": "democratizing",
|
382 |
-
"demonise": "demonize",
|
383 |
-
"demonised": "demonized",
|
384 |
-
"demonises": "demonizes",
|
385 |
-
"demonising": "demonizing",
|
386 |
-
"demoralisation": "demoralization",
|
387 |
-
"demoralise": "demoralize",
|
388 |
-
"demoralised": "demoralized",
|
389 |
-
"demoralises": "demoralizes",
|
390 |
-
"demoralising": "demoralizing",
|
391 |
-
"denationalisation": "denationalization",
|
392 |
-
"denationalise": "denationalize",
|
393 |
-
"denationalised": "denationalized",
|
394 |
-
"denationalises": "denationalizes",
|
395 |
-
"denationalising": "denationalizing",
|
396 |
-
"deodorise": "deodorize",
|
397 |
-
"deodorised": "deodorized",
|
398 |
-
"deodorises": "deodorizes",
|
399 |
-
"deodorising": "deodorizing",
|
400 |
-
"depersonalise": "depersonalize",
|
401 |
-
"depersonalised": "depersonalized",
|
402 |
-
"depersonalises": "depersonalizes",
|
403 |
-
"depersonalising": "depersonalizing",
|
404 |
-
"deputise": "deputize",
|
405 |
-
"deputised": "deputized",
|
406 |
-
"deputises": "deputizes",
|
407 |
-
"deputising": "deputizing",
|
408 |
-
"desensitisation": "desensitization",
|
409 |
-
"desensitise": "desensitize",
|
410 |
-
"desensitised": "desensitized",
|
411 |
-
"desensitises": "desensitizes",
|
412 |
-
"desensitising": "desensitizing",
|
413 |
-
"destabilisation": "destabilization",
|
414 |
-
"destabilise": "destabilize",
|
415 |
-
"destabilised": "destabilized",
|
416 |
-
"destabilises": "destabilizes",
|
417 |
-
"destabilising": "destabilizing",
|
418 |
-
"dialled": "dialed",
|
419 |
-
"dialling": "dialing",
|
420 |
-
"dialogue": "dialog",
|
421 |
-
"dialogues": "dialogs",
|
422 |
-
"diarrhoea": "diarrhea",
|
423 |
-
"digitise": "digitize",
|
424 |
-
"digitised": "digitized",
|
425 |
-
"digitises": "digitizes",
|
426 |
-
"digitising": "digitizing",
|
427 |
-
"disc": "disk",
|
428 |
-
"discolour": "discolor",
|
429 |
-
"discoloured": "discolored",
|
430 |
-
"discolouring": "discoloring",
|
431 |
-
"discolours": "discolors",
|
432 |
-
"discs": "disks",
|
433 |
-
"disembowelled": "disemboweled",
|
434 |
-
"disembowelling": "disemboweling",
|
435 |
-
"disfavour": "disfavor",
|
436 |
-
"dishevelled": "disheveled",
|
437 |
-
"dishonour": "dishonor",
|
438 |
-
"dishonourable": "dishonorable",
|
439 |
-
"dishonourably": "dishonorably",
|
440 |
-
"dishonoured": "dishonored",
|
441 |
-
"dishonouring": "dishonoring",
|
442 |
-
"dishonours": "dishonors",
|
443 |
-
"disorganisation": "disorganization",
|
444 |
-
"disorganised": "disorganized",
|
445 |
-
"distil": "distill",
|
446 |
-
"distils": "distills",
|
447 |
-
"dramatisation": "dramatization",
|
448 |
-
"dramatisations": "dramatizations",
|
449 |
-
"dramatise": "dramatize",
|
450 |
-
"dramatised": "dramatized",
|
451 |
-
"dramatises": "dramatizes",
|
452 |
-
"dramatising": "dramatizing",
|
453 |
-
"draught": "draft",
|
454 |
-
"draughtboard": "draftboard",
|
455 |
-
"draughtboards": "draftboards",
|
456 |
-
"draughtier": "draftier",
|
457 |
-
"draughtiest": "draftiest",
|
458 |
-
"draughts": "drafts",
|
459 |
-
"draughtsman": "draftsman",
|
460 |
-
"draughtsmanship": "draftsmanship",
|
461 |
-
"draughtsmen": "draftsmen",
|
462 |
-
"draughtswoman": "draftswoman",
|
463 |
-
"draughtswomen": "draftswomen",
|
464 |
-
"draughty": "drafty",
|
465 |
-
"drivelled": "driveled",
|
466 |
-
"drivelling": "driveling",
|
467 |
-
"duelled": "dueled",
|
468 |
-
"duelling": "dueling",
|
469 |
-
"economise": "economize",
|
470 |
-
"economised": "economized",
|
471 |
-
"economises": "economizes",
|
472 |
-
"economising": "economizing",
|
473 |
-
"editorialise": "editorialize",
|
474 |
-
"editorialised": "editorialized",
|
475 |
-
"editorialises": "editorializes",
|
476 |
-
"editorialising": "editorializing",
|
477 |
-
"edoema": "edema",
|
478 |
-
"empathise": "empathize",
|
479 |
-
"empathised": "empathized",
|
480 |
-
"empathises": "empathizes",
|
481 |
-
"empathising": "empathizing",
|
482 |
-
"emphasise": "emphasize",
|
483 |
-
"emphasised": "emphasized",
|
484 |
-
"emphasises": "emphasizes",
|
485 |
-
"emphasising": "emphasizing",
|
486 |
-
"enamelled": "enameled",
|
487 |
-
"enamelling": "enameling",
|
488 |
-
"enamoured": "enamored",
|
489 |
-
"encyclopaedia": "encyclopedia",
|
490 |
-
"encyclopaedias": "encyclopedias",
|
491 |
-
"encyclopaedic": "encyclopedic",
|
492 |
-
"endeavour": "endeavor",
|
493 |
-
"endeavoured": "endeavored",
|
494 |
-
"endeavouring": "endeavoring",
|
495 |
-
"endeavours": "endeavors",
|
496 |
-
"energise": "energize",
|
497 |
-
"energised": "energized",
|
498 |
-
"energises": "energizes",
|
499 |
-
"energising": "energizing",
|
500 |
-
"enrol": "enroll",
|
501 |
-
"enrols": "enrolls",
|
502 |
-
"enthral": "enthrall",
|
503 |
-
"enthrals": "enthralls",
|
504 |
-
"epaulette": "epaulet",
|
505 |
-
"epaulettes": "epaulets",
|
506 |
-
"epicentre": "epicenter",
|
507 |
-
"epicentres": "epicenters",
|
508 |
-
"epilogue": "epilog",
|
509 |
-
"epilogues": "epilogs",
|
510 |
-
"epitomise": "epitomize",
|
511 |
-
"epitomised": "epitomized",
|
512 |
-
"epitomises": "epitomizes",
|
513 |
-
"epitomising": "epitomizing",
|
514 |
-
"equalisation": "equalization",
|
515 |
-
"equalise": "equalize",
|
516 |
-
"equalised": "equalized",
|
517 |
-
"equaliser": "equalizer",
|
518 |
-
"equalisers": "equalizers",
|
519 |
-
"equalises": "equalizes",
|
520 |
-
"equalising": "equalizing",
|
521 |
-
"eulogise": "eulogize",
|
522 |
-
"eulogised": "eulogized",
|
523 |
-
"eulogises": "eulogizes",
|
524 |
-
"eulogising": "eulogizing",
|
525 |
-
"evangelise": "evangelize",
|
526 |
-
"evangelised": "evangelized",
|
527 |
-
"evangelises": "evangelizes",
|
528 |
-
"evangelising": "evangelizing",
|
529 |
-
"exorcise": "exorcize",
|
530 |
-
"exorcised": "exorcized",
|
531 |
-
"exorcises": "exorcizes",
|
532 |
-
"exorcising": "exorcizing",
|
533 |
-
"extemporisation": "extemporization",
|
534 |
-
"extemporise": "extemporize",
|
535 |
-
"extemporised": "extemporized",
|
536 |
-
"extemporises": "extemporizes",
|
537 |
-
"extemporising": "extemporizing",
|
538 |
-
"externalisation": "externalization",
|
539 |
-
"externalisations": "externalizations",
|
540 |
-
"externalise": "externalize",
|
541 |
-
"externalised": "externalized",
|
542 |
-
"externalises": "externalizes",
|
543 |
-
"externalising": "externalizing",
|
544 |
-
"factorise": "factorize",
|
545 |
-
"factorised": "factorized",
|
546 |
-
"factorises": "factorizes",
|
547 |
-
"factorising": "factorizing",
|
548 |
-
"faecal": "fecal",
|
549 |
-
"faeces": "feces",
|
550 |
-
"familiarisation": "familiarization",
|
551 |
-
"familiarise": "familiarize",
|
552 |
-
"familiarised": "familiarized",
|
553 |
-
"familiarises": "familiarizes",
|
554 |
-
"familiarising": "familiarizing",
|
555 |
-
"fantasise": "fantasize",
|
556 |
-
"fantasised": "fantasized",
|
557 |
-
"fantasises": "fantasizes",
|
558 |
-
"fantasising": "fantasizing",
|
559 |
-
"favour": "favor",
|
560 |
-
"favourable": "favorable",
|
561 |
-
"favourably": "favorably",
|
562 |
-
"favoured": "favored",
|
563 |
-
"favouring": "favoring",
|
564 |
-
"favourite": "favorite",
|
565 |
-
"favourites": "favorites",
|
566 |
-
"favouritism": "favoritism",
|
567 |
-
"favours": "favors",
|
568 |
-
"feminise": "feminize",
|
569 |
-
"feminised": "feminized",
|
570 |
-
"feminises": "feminizes",
|
571 |
-
"feminising": "feminizing",
|
572 |
-
"fertilisation": "fertilization",
|
573 |
-
"fertilise": "fertilize",
|
574 |
-
"fertilised": "fertilized",
|
575 |
-
"fertiliser": "fertilizer",
|
576 |
-
"fertilisers": "fertilizers",
|
577 |
-
"fertilises": "fertilizes",
|
578 |
-
"fertilising": "fertilizing",
|
579 |
-
"fervour": "fervor",
|
580 |
-
"fibre": "fiber",
|
581 |
-
"fibreglass": "fiberglass",
|
582 |
-
"fibres": "fibers",
|
583 |
-
"fictionalisation": "fictionalization",
|
584 |
-
"fictionalisations": "fictionalizations",
|
585 |
-
"fictionalise": "fictionalize",
|
586 |
-
"fictionalised": "fictionalized",
|
587 |
-
"fictionalises": "fictionalizes",
|
588 |
-
"fictionalising": "fictionalizing",
|
589 |
-
"fillet": "filet",
|
590 |
-
"filleted": "fileted",
|
591 |
-
"filleting": "fileting",
|
592 |
-
"fillets": "filets",
|
593 |
-
"finalisation": "finalization",
|
594 |
-
"finalise": "finalize",
|
595 |
-
"finalised": "finalized",
|
596 |
-
"finalises": "finalizes",
|
597 |
-
"finalising": "finalizing",
|
598 |
-
"flautist": "flutist",
|
599 |
-
"flautists": "flutists",
|
600 |
-
"flavour": "flavor",
|
601 |
-
"flavoured": "flavored",
|
602 |
-
"flavouring": "flavoring",
|
603 |
-
"flavourings": "flavorings",
|
604 |
-
"flavourless": "flavorless",
|
605 |
-
"flavours": "flavors",
|
606 |
-
"flavoursome": "flavorsome",
|
607 |
-
"flyer / flier": "flier / flyer",
|
608 |
-
"foetal": "fetal",
|
609 |
-
"foetid": "fetid",
|
610 |
-
"foetus": "fetus",
|
611 |
-
"foetuses": "fetuses",
|
612 |
-
"formalisation": "formalization",
|
613 |
-
"formalise": "formalize",
|
614 |
-
"formalised": "formalized",
|
615 |
-
"formalises": "formalizes",
|
616 |
-
"formalising": "formalizing",
|
617 |
-
"fossilisation": "fossilization",
|
618 |
-
"fossilise": "fossilize",
|
619 |
-
"fossilised": "fossilized",
|
620 |
-
"fossilises": "fossilizes",
|
621 |
-
"fossilising": "fossilizing",
|
622 |
-
"fraternisation": "fraternization",
|
623 |
-
"fraternise": "fraternize",
|
624 |
-
"fraternised": "fraternized",
|
625 |
-
"fraternises": "fraternizes",
|
626 |
-
"fraternising": "fraternizing",
|
627 |
-
"fulfil": "fulfill",
|
628 |
-
"fulfilment": "fulfillment",
|
629 |
-
"fulfils": "fulfills",
|
630 |
-
"funnelled": "funneled",
|
631 |
-
"funnelling": "funneling",
|
632 |
-
"gage": "gauge",
|
633 |
-
"gaged": "gauged",
|
634 |
-
"gages": "gauges",
|
635 |
-
"gaging": "gauging",
|
636 |
-
"galvanise": "galvanize",
|
637 |
-
"galvanised": "galvanized",
|
638 |
-
"galvanises": "galvanizes",
|
639 |
-
"galvanising": "galvanizing",
|
640 |
-
"gambolled": "gamboled",
|
641 |
-
"gambolling": "gamboling",
|
642 |
-
"gaol": "jail",
|
643 |
-
"gaolbird": "jailbird",
|
644 |
-
"gaolbirds": "jailbirds",
|
645 |
-
"gaolbreak": "jailbreak",
|
646 |
-
"gaolbreaks": "jailbreaks",
|
647 |
-
"gaoled": "jailed",
|
648 |
-
"gaoler": "jailer",
|
649 |
-
"gaolers": "jailers",
|
650 |
-
"gaoling": "jailing",
|
651 |
-
"gaols": "jails",
|
652 |
-
"gasses": "gases",
|
653 |
-
"generalisation": "generalization",
|
654 |
-
"generalisations": "generalizations",
|
655 |
-
"generalise": "generalize",
|
656 |
-
"generalised": "generalized",
|
657 |
-
"generalises": "generalizes",
|
658 |
-
"generalising": "generalizing",
|
659 |
-
"ghettoise": "ghettoize",
|
660 |
-
"ghettoised": "ghettoized",
|
661 |
-
"ghettoises": "ghettoizes",
|
662 |
-
"ghettoising": "ghettoizing",
|
663 |
-
"gipsies": "gypsies",
|
664 |
-
"glamor": "glamour",
|
665 |
-
"glamorise": "glamorize",
|
666 |
-
"glamorised": "glamorized",
|
667 |
-
"glamorises": "glamorizes",
|
668 |
-
"glamorising": "glamorizing",
|
669 |
-
"globalisation": "globalization",
|
670 |
-
"globalise": "globalize",
|
671 |
-
"globalised": "globalized",
|
672 |
-
"globalises": "globalizes",
|
673 |
-
"globalising": "globalizing",
|
674 |
-
"glueing": "gluing",
|
675 |
-
"goitre": "goiter",
|
676 |
-
"goitres": "goiters",
|
677 |
-
"gonorrhoea": "gonorrhea",
|
678 |
-
"gramme": "gram",
|
679 |
-
"grammes": "grams",
|
680 |
-
"gravelled": "graveled",
|
681 |
-
"grey": "gray",
|
682 |
-
"greyed": "grayed",
|
683 |
-
"greying": "graying",
|
684 |
-
"greyish": "grayish",
|
685 |
-
"greyness": "grayness",
|
686 |
-
"greys": "grays",
|
687 |
-
"grovelled": "groveled",
|
688 |
-
"grovelling": "groveling",
|
689 |
-
"groyne": "groin",
|
690 |
-
"groynes": "groins",
|
691 |
-
"gruelling": "grueling",
|
692 |
-
"gruellingly": "gruelingly",
|
693 |
-
"gryphon": "griffin",
|
694 |
-
"gryphons": "griffins",
|
695 |
-
"gynaecological": "gynecological",
|
696 |
-
"gynaecologist": "gynecologist",
|
697 |
-
"gynaecologists": "gynecologists",
|
698 |
-
"gynaecology": "gynecology",
|
699 |
-
"haematological": "hematological",
|
700 |
-
"haematologist": "hematologist",
|
701 |
-
"haematologists": "hematologists",
|
702 |
-
"haematology": "hematology",
|
703 |
-
"haemoglobin": "hemoglobin",
|
704 |
-
"haemophilia": "hemophilia",
|
705 |
-
"haemophiliac": "hemophiliac",
|
706 |
-
"haemophiliacs": "hemophiliacs",
|
707 |
-
"haemorrhage": "hemorrhage",
|
708 |
-
"haemorrhaged": "hemorrhaged",
|
709 |
-
"haemorrhages": "hemorrhages",
|
710 |
-
"haemorrhaging": "hemorrhaging",
|
711 |
-
"haemorrhoids": "hemorrhoids",
|
712 |
-
"harbour": "harbor",
|
713 |
-
"harboured": "harbored",
|
714 |
-
"harbouring": "harboring",
|
715 |
-
"harbours": "harbors",
|
716 |
-
"harmonisation": "harmonization",
|
717 |
-
"harmonise": "harmonize",
|
718 |
-
"harmonised": "harmonized",
|
719 |
-
"harmonises": "harmonizes",
|
720 |
-
"harmonising": "harmonizing",
|
721 |
-
"homoeopath": "homeopath",
|
722 |
-
"homoeopathic": "homeopathic",
|
723 |
-
"homoeopaths": "homeopaths",
|
724 |
-
"homoeopathy": "homeopathy",
|
725 |
-
"homogenise": "homogenize",
|
726 |
-
"homogenised": "homogenized",
|
727 |
-
"homogenises": "homogenizes",
|
728 |
-
"homogenising": "homogenizing",
|
729 |
-
"honour": "honor",
|
730 |
-
"honourable": "honorable",
|
731 |
-
"honourably": "honorably",
|
732 |
-
"honoured": "honored",
|
733 |
-
"honouring": "honoring",
|
734 |
-
"honours": "honors",
|
735 |
-
"hospitalisation": "hospitalization",
|
736 |
-
"hospitalise": "hospitalize",
|
737 |
-
"hospitalised": "hospitalized",
|
738 |
-
"hospitalises": "hospitalizes",
|
739 |
-
"hospitalising": "hospitalizing",
|
740 |
-
"humanise": "humanize",
|
741 |
-
"humanised": "humanized",
|
742 |
-
"humanises": "humanizes",
|
743 |
-
"humanising": "humanizing",
|
744 |
-
"humour": "humor",
|
745 |
-
"humoured": "humored",
|
746 |
-
"humouring": "humoring",
|
747 |
-
"humourless": "humorless",
|
748 |
-
"humours": "humors",
|
749 |
-
"hybridise": "hybridize",
|
750 |
-
"hybridised": "hybridized",
|
751 |
-
"hybridises": "hybridizes",
|
752 |
-
"hybridising": "hybridizing",
|
753 |
-
"hypnotise": "hypnotize",
|
754 |
-
"hypnotised": "hypnotized",
|
755 |
-
"hypnotises": "hypnotizes",
|
756 |
-
"hypnotising": "hypnotizing",
|
757 |
-
"hypothesise": "hypothesize",
|
758 |
-
"hypothesised": "hypothesized",
|
759 |
-
"hypothesises": "hypothesizes",
|
760 |
-
"hypothesising": "hypothesizing",
|
761 |
-
"idealisation": "idealization",
|
762 |
-
"idealise": "idealize",
|
763 |
-
"idealised": "idealized",
|
764 |
-
"idealises": "idealizes",
|
765 |
-
"idealising": "idealizing",
|
766 |
-
"idolise": "idolize",
|
767 |
-
"idolised": "idolized",
|
768 |
-
"idolises": "idolizes",
|
769 |
-
"idolising": "idolizing",
|
770 |
-
"immobilisation": "immobilization",
|
771 |
-
"immobilise": "immobilize",
|
772 |
-
"immobilised": "immobilized",
|
773 |
-
"immobiliser": "immobilizer",
|
774 |
-
"immobilisers": "immobilizers",
|
775 |
-
"immobilises": "immobilizes",
|
776 |
-
"immobilising": "immobilizing",
|
777 |
-
"immortalise": "immortalize",
|
778 |
-
"immortalised": "immortalized",
|
779 |
-
"immortalises": "immortalizes",
|
780 |
-
"immortalising": "immortalizing",
|
781 |
-
"immunisation": "immunization",
|
782 |
-
"immunise": "immunize",
|
783 |
-
"immunised": "immunized",
|
784 |
-
"immunises": "immunizes",
|
785 |
-
"immunising": "immunizing",
|
786 |
-
"impanelled": "impaneled",
|
787 |
-
"impanelling": "impaneling",
|
788 |
-
"imperilled": "imperiled",
|
789 |
-
"imperilling": "imperiling",
|
790 |
-
"individualise": "individualize",
|
791 |
-
"individualised": "individualized",
|
792 |
-
"individualises": "individualizes",
|
793 |
-
"individualising": "individualizing",
|
794 |
-
"industrialise": "industrialize",
|
795 |
-
"industrialised": "industrialized",
|
796 |
-
"industrialises": "industrializes",
|
797 |
-
"industrialising": "industrializing",
|
798 |
-
"inflexion": "inflection",
|
799 |
-
"inflexions": "inflections",
|
800 |
-
"initialise": "initialize",
|
801 |
-
"initialised": "initialized",
|
802 |
-
"initialises": "initializes",
|
803 |
-
"initialising": "initializing",
|
804 |
-
"initialled": "initialed",
|
805 |
-
"initialling": "initialing",
|
806 |
-
"instal": "install",
|
807 |
-
"instalment": "installment",
|
808 |
-
"instalments": "installments",
|
809 |
-
"instals": "installs",
|
810 |
-
"instil": "instill",
|
811 |
-
"instils": "instills",
|
812 |
-
"institutionalisation": "institutionalization",
|
813 |
-
"institutionalise": "institutionalize",
|
814 |
-
"institutionalised": "institutionalized",
|
815 |
-
"institutionalises": "institutionalizes",
|
816 |
-
"institutionalising": "institutionalizing",
|
817 |
-
"intellectualise": "intellectualize",
|
818 |
-
"intellectualised": "intellectualized",
|
819 |
-
"intellectualises": "intellectualizes",
|
820 |
-
"intellectualising": "intellectualizing",
|
821 |
-
"internalisation": "internalization",
|
822 |
-
"internalise": "internalize",
|
823 |
-
"internalised": "internalized",
|
824 |
-
"internalises": "internalizes",
|
825 |
-
"internalising": "internalizing",
|
826 |
-
"internationalisation": "internationalization",
|
827 |
-
"internationalise": "internationalize",
|
828 |
-
"internationalised": "internationalized",
|
829 |
-
"internationalises": "internationalizes",
|
830 |
-
"internationalising": "internationalizing",
|
831 |
-
"ionisation": "ionization",
|
832 |
-
"ionise": "ionize",
|
833 |
-
"ionised": "ionized",
|
834 |
-
"ioniser": "ionizer",
|
835 |
-
"ionisers": "ionizers",
|
836 |
-
"ionises": "ionizes",
|
837 |
-
"ionising": "ionizing",
|
838 |
-
"italicise": "italicize",
|
839 |
-
"italicised": "italicized",
|
840 |
-
"italicises": "italicizes",
|
841 |
-
"italicising": "italicizing",
|
842 |
-
"itemise": "itemize",
|
843 |
-
"itemised": "itemized",
|
844 |
-
"itemises": "itemizes",
|
845 |
-
"itemising": "itemizing",
|
846 |
-
"jeopardise": "jeopardize",
|
847 |
-
"jeopardised": "jeopardized",
|
848 |
-
"jeopardises": "jeopardizes",
|
849 |
-
"jeopardising": "jeopardizing",
|
850 |
-
"jewelled": "jeweled",
|
851 |
-
"jeweller": "jeweler",
|
852 |
-
"jewellers": "jewelers",
|
853 |
-
"jewellery": "jewelry",
|
854 |
-
"judgement": "judgment",
|
855 |
-
"kilogramme": "kilogram",
|
856 |
-
"kilogrammes": "kilograms",
|
857 |
-
"kilometre": "kilometer",
|
858 |
-
"kilometres": "kilometers",
|
859 |
-
"labelled": "labeled",
|
860 |
-
"labelling": "labeling",
|
861 |
-
"labour": "labor",
|
862 |
-
"laboured": "labored",
|
863 |
-
"labourer": "laborer",
|
864 |
-
"labourers": "laborers",
|
865 |
-
"labouring": "laboring",
|
866 |
-
"labours": "labors",
|
867 |
-
"lacklustre": "lackluster",
|
868 |
-
"legalisation": "legalization",
|
869 |
-
"legalise": "legalize",
|
870 |
-
"legalised": "legalized",
|
871 |
-
"legalises": "legalizes",
|
872 |
-
"legalising": "legalizing",
|
873 |
-
"legitimise": "legitimize",
|
874 |
-
"legitimised": "legitimized",
|
875 |
-
"legitimises": "legitimizes",
|
876 |
-
"legitimising": "legitimizing",
|
877 |
-
"leukaemia": "leukemia",
|
878 |
-
"levelled": "leveled",
|
879 |
-
"leveller": "leveler",
|
880 |
-
"levellers": "levelers",
|
881 |
-
"levelling": "leveling",
|
882 |
-
"libelled": "libeled",
|
883 |
-
"libelling": "libeling",
|
884 |
-
"libellous": "libelous",
|
885 |
-
"liberalisation": "liberalization",
|
886 |
-
"liberalise": "liberalize",
|
887 |
-
"liberalised": "liberalized",
|
888 |
-
"liberalises": "liberalizes",
|
889 |
-
"liberalising": "liberalizing",
|
890 |
-
"licence": "license",
|
891 |
-
"licenced": "licensed",
|
892 |
-
"licences": "licenses",
|
893 |
-
"licencing": "licensing",
|
894 |
-
"likeable": "likable",
|
895 |
-
"lionisation": "lionization",
|
896 |
-
"lionise": "lionize",
|
897 |
-
"lionised": "lionized",
|
898 |
-
"lionises": "lionizes",
|
899 |
-
"lionising": "lionizing",
|
900 |
-
"liquidise": "liquidize",
|
901 |
-
"liquidised": "liquidized",
|
902 |
-
"liquidiser": "liquidizer",
|
903 |
-
"liquidisers": "liquidizers",
|
904 |
-
"liquidises": "liquidizes",
|
905 |
-
"liquidising": "liquidizing",
|
906 |
-
"litre": "liter",
|
907 |
-
"litres": "liters",
|
908 |
-
"localise": "localize",
|
909 |
-
"localised": "localized",
|
910 |
-
"localises": "localizes",
|
911 |
-
"localising": "localizing",
|
912 |
-
"louvre": "louver",
|
913 |
-
"louvred": "louvered",
|
914 |
-
"louvres": "louvers",
|
915 |
-
"lustre": "luster",
|
916 |
-
"magnetise": "magnetize",
|
917 |
-
"magnetised": "magnetized",
|
918 |
-
"magnetises": "magnetizes",
|
919 |
-
"magnetising": "magnetizing",
|
920 |
-
"manoeuvrability": "maneuverability",
|
921 |
-
"manoeuvrable": "maneuverable",
|
922 |
-
"manoeuvre": "maneuver",
|
923 |
-
"manoeuvred": "maneuvered",
|
924 |
-
"manoeuvres": "maneuvers",
|
925 |
-
"manoeuvring": "maneuvering",
|
926 |
-
"manoeuvrings": "maneuverings",
|
927 |
-
"marginalisation": "marginalization",
|
928 |
-
"marginalise": "marginalize",
|
929 |
-
"marginalised": "marginalized",
|
930 |
-
"marginalises": "marginalizes",
|
931 |
-
"marginalising": "marginalizing",
|
932 |
-
"marshalled": "marshaled",
|
933 |
-
"marshalling": "marshaling",
|
934 |
-
"marvelled": "marveled",
|
935 |
-
"marvelling": "marveling",
|
936 |
-
"marvellous": "marvelous",
|
937 |
-
"marvellously": "marvelously",
|
938 |
-
"materialisation": "materialization",
|
939 |
-
"materialise": "materialize",
|
940 |
-
"materialised": "materialized",
|
941 |
-
"materialises": "materializes",
|
942 |
-
"materialising": "materializing",
|
943 |
-
"maximisation": "maximization",
|
944 |
-
"maximise": "maximize",
|
945 |
-
"maximised": "maximized",
|
946 |
-
"maximises": "maximizes",
|
947 |
-
"maximising": "maximizing",
|
948 |
-
"meagre": "meager",
|
949 |
-
"mechanisation": "mechanization",
|
950 |
-
"mechanise": "mechanize",
|
951 |
-
"mechanised": "mechanized",
|
952 |
-
"mechanises": "mechanizes",
|
953 |
-
"mechanising": "mechanizing",
|
954 |
-
"mediaeval": "medieval",
|
955 |
-
"memorialise": "memorialize",
|
956 |
-
"memorialised": "memorialized",
|
957 |
-
"memorialises": "memorializes",
|
958 |
-
"memorialising": "memorializing",
|
959 |
-
"memorise": "memorize",
|
960 |
-
"memorised": "memorized",
|
961 |
-
"memorises": "memorizes",
|
962 |
-
"memorising": "memorizing",
|
963 |
-
"mesmerise": "mesmerize",
|
964 |
-
"mesmerised": "mesmerized",
|
965 |
-
"mesmerises": "mesmerizes",
|
966 |
-
"mesmerising": "mesmerizing",
|
967 |
-
"metabolise": "metabolize",
|
968 |
-
"metabolised": "metabolized",
|
969 |
-
"metabolises": "metabolizes",
|
970 |
-
"metabolising": "metabolizing",
|
971 |
-
"metre": "meter",
|
972 |
-
"metres": "meters",
|
973 |
-
"mhm": "hmm",
|
974 |
-
"micrometre": "micrometer",
|
975 |
-
"micrometres": "micrometers",
|
976 |
-
"militarise": "militarize",
|
977 |
-
"militarised": "militarized",
|
978 |
-
"militarises": "militarizes",
|
979 |
-
"militarising": "militarizing",
|
980 |
-
"milligramme": "milligram",
|
981 |
-
"milligrammes": "milligrams",
|
982 |
-
"millilitre": "milliliter",
|
983 |
-
"millilitres": "milliliters",
|
984 |
-
"millimetre": "millimeter",
|
985 |
-
"millimetres": "millimeters",
|
986 |
-
"miniaturisation": "miniaturization",
|
987 |
-
"miniaturise": "miniaturize",
|
988 |
-
"miniaturised": "miniaturized",
|
989 |
-
"miniaturises": "miniaturizes",
|
990 |
-
"miniaturising": "miniaturizing",
|
991 |
-
"minibusses": "minibuses",
|
992 |
-
"minimise": "minimize",
|
993 |
-
"minimised": "minimized",
|
994 |
-
"minimises": "minimizes",
|
995 |
-
"minimising": "minimizing",
|
996 |
-
"misbehaviour": "misbehavior",
|
997 |
-
"misdemeanour": "misdemeanor",
|
998 |
-
"misdemeanours": "misdemeanors",
|
999 |
-
"misspelt": "misspelled",
|
1000 |
-
"mitre": "miter",
|
1001 |
-
"mitres": "miters",
|
1002 |
-
"mm": "hmm",
|
1003 |
-
"mmm": "hmm",
|
1004 |
-
"mobilisation": "mobilization",
|
1005 |
-
"mobilise": "mobilize",
|
1006 |
-
"mobilised": "mobilized",
|
1007 |
-
"mobilises": "mobilizes",
|
1008 |
-
"mobilising": "mobilizing",
|
1009 |
-
"modelled": "modeled",
|
1010 |
-
"modeller": "modeler",
|
1011 |
-
"modellers": "modelers",
|
1012 |
-
"modelling": "modeling",
|
1013 |
-
"modernise": "modernize",
|
1014 |
-
"modernised": "modernized",
|
1015 |
-
"modernises": "modernizes",
|
1016 |
-
"modernising": "modernizing",
|
1017 |
-
"moisturise": "moisturize",
|
1018 |
-
"moisturised": "moisturized",
|
1019 |
-
"moisturiser": "moisturizer",
|
1020 |
-
"moisturisers": "moisturizers",
|
1021 |
-
"moisturises": "moisturizes",
|
1022 |
-
"moisturising": "moisturizing",
|
1023 |
-
"monologue": "monolog",
|
1024 |
-
"monologues": "monologs",
|
1025 |
-
"monopolisation": "monopolization",
|
1026 |
-
"monopolise": "monopolize",
|
1027 |
-
"monopolised": "monopolized",
|
1028 |
-
"monopolises": "monopolizes",
|
1029 |
-
"monopolising": "monopolizing",
|
1030 |
-
"moralise": "moralize",
|
1031 |
-
"moralised": "moralized",
|
1032 |
-
"moralises": "moralizes",
|
1033 |
-
"moralising": "moralizing",
|
1034 |
-
"motorised": "motorized",
|
1035 |
-
"mould": "mold",
|
1036 |
-
"moulded": "molded",
|
1037 |
-
"moulder": "molder",
|
1038 |
-
"mouldered": "moldered",
|
1039 |
-
"mouldering": "moldering",
|
1040 |
-
"moulders": "molders",
|
1041 |
-
"mouldier": "moldier",
|
1042 |
-
"mouldiest": "moldiest",
|
1043 |
-
"moulding": "molding",
|
1044 |
-
"mouldings": "moldings",
|
1045 |
-
"moulds": "molds",
|
1046 |
-
"mouldy": "moldy",
|
1047 |
-
"moult": "molt",
|
1048 |
-
"moulted": "molted",
|
1049 |
-
"moulting": "molting",
|
1050 |
-
"moults": "molts",
|
1051 |
-
"moustache": "mustache",
|
1052 |
-
"moustached": "mustached",
|
1053 |
-
"moustaches": "mustaches",
|
1054 |
-
"moustachioed": "mustachioed",
|
1055 |
-
"multicoloured": "multicolored",
|
1056 |
-
"nationalisation": "nationalization",
|
1057 |
-
"nationalisations": "nationalizations",
|
1058 |
-
"nationalise": "nationalize",
|
1059 |
-
"nationalised": "nationalized",
|
1060 |
-
"nationalises": "nationalizes",
|
1061 |
-
"nationalising": "nationalizing",
|
1062 |
-
"naturalisation": "naturalization",
|
1063 |
-
"naturalise": "naturalize",
|
1064 |
-
"naturalised": "naturalized",
|
1065 |
-
"naturalises": "naturalizes",
|
1066 |
-
"naturalising": "naturalizing",
|
1067 |
-
"neighbour": "neighbor",
|
1068 |
-
"neighbourhood": "neighborhood",
|
1069 |
-
"neighbourhoods": "neighborhoods",
|
1070 |
-
"neighbouring": "neighboring",
|
1071 |
-
"neighbourliness": "neighborliness",
|
1072 |
-
"neighbourly": "neighborly",
|
1073 |
-
"neighbours": "neighbors",
|
1074 |
-
"neutralisation": "neutralization",
|
1075 |
-
"neutralise": "neutralize",
|
1076 |
-
"neutralised": "neutralized",
|
1077 |
-
"neutralises": "neutralizes",
|
1078 |
-
"neutralising": "neutralizing",
|
1079 |
-
"normalisation": "normalization",
|
1080 |
-
"normalise": "normalize",
|
1081 |
-
"normalised": "normalized",
|
1082 |
-
"normalises": "normalizes",
|
1083 |
-
"normalising": "normalizing",
|
1084 |
-
"odour": "odor",
|
1085 |
-
"odourless": "odorless",
|
1086 |
-
"odours": "odors",
|
1087 |
-
"oesophagus": "esophagus",
|
1088 |
-
"oesophaguses": "esophaguses",
|
1089 |
-
"oestrogen": "estrogen",
|
1090 |
-
"offence": "offense",
|
1091 |
-
"offences": "offenses",
|
1092 |
-
"omelette": "omelet",
|
1093 |
-
"omelettes": "omelets",
|
1094 |
-
"optimise": "optimize",
|
1095 |
-
"optimised": "optimized",
|
1096 |
-
"optimises": "optimizes",
|
1097 |
-
"optimising": "optimizing",
|
1098 |
-
"organisation": "organization",
|
1099 |
-
"organisational": "organizational",
|
1100 |
-
"organisations": "organizations",
|
1101 |
-
"organise": "organize",
|
1102 |
-
"organised": "organized",
|
1103 |
-
"organiser": "organizer",
|
1104 |
-
"organisers": "organizers",
|
1105 |
-
"organises": "organizes",
|
1106 |
-
"organising": "organizing",
|
1107 |
-
"orthopaedic": "orthopedic",
|
1108 |
-
"orthopaedics": "orthopedics",
|
1109 |
-
"ostracise": "ostracize",
|
1110 |
-
"ostracised": "ostracized",
|
1111 |
-
"ostracises": "ostracizes",
|
1112 |
-
"ostracising": "ostracizing",
|
1113 |
-
"outmanoeuvre": "outmaneuver",
|
1114 |
-
"outmanoeuvred": "outmaneuvered",
|
1115 |
-
"outmanoeuvres": "outmaneuvers",
|
1116 |
-
"outmanoeuvring": "outmaneuvering",
|
1117 |
-
"overemphasise": "overemphasize",
|
1118 |
-
"overemphasised": "overemphasized",
|
1119 |
-
"overemphasises": "overemphasizes",
|
1120 |
-
"overemphasising": "overemphasizing",
|
1121 |
-
"oxidisation": "oxidization",
|
1122 |
-
"oxidise": "oxidize",
|
1123 |
-
"oxidised": "oxidized",
|
1124 |
-
"oxidises": "oxidizes",
|
1125 |
-
"oxidising": "oxidizing",
|
1126 |
-
"paederast": "pederast",
|
1127 |
-
"paederasts": "pederasts",
|
1128 |
-
"paediatric": "pediatric",
|
1129 |
-
"paediatrician": "pediatrician",
|
1130 |
-
"paediatricians": "pediatricians",
|
1131 |
-
"paediatrics": "pediatrics",
|
1132 |
-
"paedophile": "pedophile",
|
1133 |
-
"paedophiles": "pedophiles",
|
1134 |
-
"paedophilia": "pedophilia",
|
1135 |
-
"palaeolithic": "paleolithic",
|
1136 |
-
"palaeontologist": "paleontologist",
|
1137 |
-
"palaeontologists": "paleontologists",
|
1138 |
-
"palaeontology": "paleontology",
|
1139 |
-
"panelled": "paneled",
|
1140 |
-
"panelling": "paneling",
|
1141 |
-
"panellist": "panelist",
|
1142 |
-
"panellists": "panelists",
|
1143 |
-
"paralyse": "paralyze",
|
1144 |
-
"paralysed": "paralyzed",
|
1145 |
-
"paralyses": "paralyzes",
|
1146 |
-
"paralysing": "paralyzing",
|
1147 |
-
"parcelled": "parceled",
|
1148 |
-
"parcelling": "parceling",
|
1149 |
-
"parlour": "parlor",
|
1150 |
-
"parlours": "parlors",
|
1151 |
-
"particularise": "particularize",
|
1152 |
-
"particularised": "particularized",
|
1153 |
-
"particularises": "particularizes",
|
1154 |
-
"particularising": "particularizing",
|
1155 |
-
"passivisation": "passivization",
|
1156 |
-
"passivise": "passivize",
|
1157 |
-
"passivised": "passivized",
|
1158 |
-
"passivises": "passivizes",
|
1159 |
-
"passivising": "passivizing",
|
1160 |
-
"pasteurisation": "pasteurization",
|
1161 |
-
"pasteurise": "pasteurize",
|
1162 |
-
"pasteurised": "pasteurized",
|
1163 |
-
"pasteurises": "pasteurizes",
|
1164 |
-
"pasteurising": "pasteurizing",
|
1165 |
-
"patronise": "patronize",
|
1166 |
-
"patronised": "patronized",
|
1167 |
-
"patronises": "patronizes",
|
1168 |
-
"patronising": "patronizing",
|
1169 |
-
"patronisingly": "patronizingly",
|
1170 |
-
"pedalled": "pedaled",
|
1171 |
-
"pedalling": "pedaling",
|
1172 |
-
"pedestrianisation": "pedestrianization",
|
1173 |
-
"pedestrianise": "pedestrianize",
|
1174 |
-
"pedestrianised": "pedestrianized",
|
1175 |
-
"pedestrianises": "pedestrianizes",
|
1176 |
-
"pedestrianising": "pedestrianizing",
|
1177 |
-
"penalise": "penalize",
|
1178 |
-
"penalised": "penalized",
|
1179 |
-
"penalises": "penalizes",
|
1180 |
-
"penalising": "penalizing",
|
1181 |
-
"pencilled": "penciled",
|
1182 |
-
"pencilling": "penciling",
|
1183 |
-
"personalise": "personalize",
|
1184 |
-
"personalised": "personalized",
|
1185 |
-
"personalises": "personalizes",
|
1186 |
-
"personalising": "personalizing",
|
1187 |
-
"pharmacopoeia": "pharmacopeia",
|
1188 |
-
"pharmacopoeias": "pharmacopeias",
|
1189 |
-
"philosophise": "philosophize",
|
1190 |
-
"philosophised": "philosophized",
|
1191 |
-
"philosophises": "philosophizes",
|
1192 |
-
"philosophising": "philosophizing",
|
1193 |
-
"philtre": "filter",
|
1194 |
-
"philtres": "filters",
|
1195 |
-
"phoney": "phony",
|
1196 |
-
"plagiarise": "plagiarize",
|
1197 |
-
"plagiarised": "plagiarized",
|
1198 |
-
"plagiarises": "plagiarizes",
|
1199 |
-
"plagiarising": "plagiarizing",
|
1200 |
-
"plough": "plow",
|
1201 |
-
"ploughed": "plowed",
|
1202 |
-
"ploughing": "plowing",
|
1203 |
-
"ploughman": "plowman",
|
1204 |
-
"ploughmen": "plowmen",
|
1205 |
-
"ploughs": "plows",
|
1206 |
-
"ploughshare": "plowshare",
|
1207 |
-
"ploughshares": "plowshares",
|
1208 |
-
"polarisation": "polarization",
|
1209 |
-
"polarise": "polarize",
|
1210 |
-
"polarised": "polarized",
|
1211 |
-
"polarises": "polarizes",
|
1212 |
-
"polarising": "polarizing",
|
1213 |
-
"politicisation": "politicization",
|
1214 |
-
"politicise": "politicize",
|
1215 |
-
"politicised": "politicized",
|
1216 |
-
"politicises": "politicizes",
|
1217 |
-
"politicising": "politicizing",
|
1218 |
-
"popularisation": "popularization",
|
1219 |
-
"popularise": "popularize",
|
1220 |
-
"popularised": "popularized",
|
1221 |
-
"popularises": "popularizes",
|
1222 |
-
"popularising": "popularizing",
|
1223 |
-
"pouffe": "pouf",
|
1224 |
-
"pouffes": "poufs",
|
1225 |
-
"practise": "practice",
|
1226 |
-
"practised": "practiced",
|
1227 |
-
"practises": "practices",
|
1228 |
-
"practising": "practicing",
|
1229 |
-
"praesidium": "presidium",
|
1230 |
-
"praesidiums": "presidiums",
|
1231 |
-
"pressurisation": "pressurization",
|
1232 |
-
"pressurise": "pressurize",
|
1233 |
-
"pressurised": "pressurized",
|
1234 |
-
"pressurises": "pressurizes",
|
1235 |
-
"pressurising": "pressurizing",
|
1236 |
-
"pretence": "pretense",
|
1237 |
-
"pretences": "pretenses",
|
1238 |
-
"primaeval": "primeval",
|
1239 |
-
"prioritisation": "prioritization",
|
1240 |
-
"prioritise": "prioritize",
|
1241 |
-
"prioritised": "prioritized",
|
1242 |
-
"prioritises": "prioritizes",
|
1243 |
-
"prioritising": "prioritizing",
|
1244 |
-
"privatisation": "privatization",
|
1245 |
-
"privatisations": "privatizations",
|
1246 |
-
"privatise": "privatize",
|
1247 |
-
"privatised": "privatized",
|
1248 |
-
"privatises": "privatizes",
|
1249 |
-
"privatising": "privatizing",
|
1250 |
-
"professionalisation": "professionalization",
|
1251 |
-
"professionalise": "professionalize",
|
1252 |
-
"professionalised": "professionalized",
|
1253 |
-
"professionalises": "professionalizes",
|
1254 |
-
"professionalising": "professionalizing",
|
1255 |
-
"programme": "program",
|
1256 |
-
"programmes": "programs",
|
1257 |
-
"prologue": "prolog",
|
1258 |
-
"prologues": "prologs",
|
1259 |
-
"propagandise": "propagandize",
|
1260 |
-
"propagandised": "propagandized",
|
1261 |
-
"propagandises": "propagandizes",
|
1262 |
-
"propagandising": "propagandizing",
|
1263 |
-
"proselytise": "proselytize",
|
1264 |
-
"proselytised": "proselytized",
|
1265 |
-
"proselytiser": "proselytizer",
|
1266 |
-
"proselytisers": "proselytizers",
|
1267 |
-
"proselytises": "proselytizes",
|
1268 |
-
"proselytising": "proselytizing",
|
1269 |
-
"psychoanalyse": "psychoanalyze",
|
1270 |
-
"psychoanalysed": "psychoanalyzed",
|
1271 |
-
"psychoanalyses": "psychoanalyzes",
|
1272 |
-
"psychoanalysing": "psychoanalyzing",
|
1273 |
-
"publicise": "publicize",
|
1274 |
-
"publicised": "publicized",
|
1275 |
-
"publicises": "publicizes",
|
1276 |
-
"publicising": "publicizing",
|
1277 |
-
"pulverisation": "pulverization",
|
1278 |
-
"pulverise": "pulverize",
|
1279 |
-
"pulverised": "pulverized",
|
1280 |
-
"pulverises": "pulverizes",
|
1281 |
-
"pulverising": "pulverizing",
|
1282 |
-
"pummelled": "pummel",
|
1283 |
-
"pummelling": "pummeled",
|
1284 |
-
"pyjama": "pajama",
|
1285 |
-
"pyjamas": "pajamas",
|
1286 |
-
"pzazz": "pizzazz",
|
1287 |
-
"quarrelled": "quarreled",
|
1288 |
-
"quarrelling": "quarreling",
|
1289 |
-
"radicalise": "radicalize",
|
1290 |
-
"radicalised": "radicalized",
|
1291 |
-
"radicalises": "radicalizes",
|
1292 |
-
"radicalising": "radicalizing",
|
1293 |
-
"rancour": "rancor",
|
1294 |
-
"randomise": "randomize",
|
1295 |
-
"randomised": "randomized",
|
1296 |
-
"randomises": "randomizes",
|
1297 |
-
"randomising": "randomizing",
|
1298 |
-
"rationalisation": "rationalization",
|
1299 |
-
"rationalisations": "rationalizations",
|
1300 |
-
"rationalise": "rationalize",
|
1301 |
-
"rationalised": "rationalized",
|
1302 |
-
"rationalises": "rationalizes",
|
1303 |
-
"rationalising": "rationalizing",
|
1304 |
-
"ravelled": "raveled",
|
1305 |
-
"ravelling": "raveling",
|
1306 |
-
"realisable": "realizable",
|
1307 |
-
"realisation": "realization",
|
1308 |
-
"realisations": "realizations",
|
1309 |
-
"realise": "realize",
|
1310 |
-
"realised": "realized",
|
1311 |
-
"realises": "realizes",
|
1312 |
-
"realising": "realizing",
|
1313 |
-
"recognisable": "recognizable",
|
1314 |
-
"recognisably": "recognizably",
|
1315 |
-
"recognisance": "recognizance",
|
1316 |
-
"recognise": "recognize",
|
1317 |
-
"recognised": "recognized",
|
1318 |
-
"recognises": "recognizes",
|
1319 |
-
"recognising": "recognizing",
|
1320 |
-
"reconnoitre": "reconnoiter",
|
1321 |
-
"reconnoitred": "reconnoitered",
|
1322 |
-
"reconnoitres": "reconnoiters",
|
1323 |
-
"reconnoitring": "reconnoitering",
|
1324 |
-
"refuelled": "refueled",
|
1325 |
-
"refuelling": "refueling",
|
1326 |
-
"regularisation": "regularization",
|
1327 |
-
"regularise": "regularize",
|
1328 |
-
"regularised": "regularized",
|
1329 |
-
"regularises": "regularizes",
|
1330 |
-
"regularising": "regularizing",
|
1331 |
-
"remodelled": "remodeled",
|
1332 |
-
"remodelling": "remodeling",
|
1333 |
-
"remould": "remold",
|
1334 |
-
"remoulded": "remolded",
|
1335 |
-
"remoulding": "remolding",
|
1336 |
-
"remoulds": "remolds",
|
1337 |
-
"reorganisation": "reorganization",
|
1338 |
-
"reorganisations": "reorganizations",
|
1339 |
-
"reorganise": "reorganize",
|
1340 |
-
"reorganised": "reorganized",
|
1341 |
-
"reorganises": "reorganizes",
|
1342 |
-
"reorganising": "reorganizing",
|
1343 |
-
"revelled": "reveled",
|
1344 |
-
"reveller": "reveler",
|
1345 |
-
"revellers": "revelers",
|
1346 |
-
"revelling": "reveling",
|
1347 |
-
"revitalise": "revitalize",
|
1348 |
-
"revitalised": "revitalized",
|
1349 |
-
"revitalises": "revitalizes",
|
1350 |
-
"revitalising": "revitalizing",
|
1351 |
-
"revolutionise": "revolutionize",
|
1352 |
-
"revolutionised": "revolutionized",
|
1353 |
-
"revolutionises": "revolutionizes",
|
1354 |
-
"revolutionising": "revolutionizing",
|
1355 |
-
"rhapsodise": "rhapsodize",
|
1356 |
-
"rhapsodised": "rhapsodized",
|
1357 |
-
"rhapsodises": "rhapsodizes",
|
1358 |
-
"rhapsodising": "rhapsodizing",
|
1359 |
-
"rigour": "rigor",
|
1360 |
-
"rigours": "rigors",
|
1361 |
-
"ritualised": "ritualized",
|
1362 |
-
"rivalled": "rivaled",
|
1363 |
-
"rivalling": "rivaling",
|
1364 |
-
"romanticise": "romanticize",
|
1365 |
-
"romanticised": "romanticized",
|
1366 |
-
"romanticises": "romanticizes",
|
1367 |
-
"romanticising": "romanticizing",
|
1368 |
-
"rumour": "rumor",
|
1369 |
-
"rumoured": "rumored",
|
1370 |
-
"rumours": "rumors",
|
1371 |
-
"sabre": "saber",
|
1372 |
-
"sabres": "sabers",
|
1373 |
-
"saltpetre": "saltpeter",
|
1374 |
-
"sanitise": "sanitize",
|
1375 |
-
"sanitised": "sanitized",
|
1376 |
-
"sanitises": "sanitizes",
|
1377 |
-
"sanitising": "sanitizing",
|
1378 |
-
"satirise": "satirize",
|
1379 |
-
"satirised": "satirized",
|
1380 |
-
"satirises": "satirizes",
|
1381 |
-
"satirising": "satirizing",
|
1382 |
-
"saviour": "savior",
|
1383 |
-
"saviours": "saviors",
|
1384 |
-
"savour": "savor",
|
1385 |
-
"savoured": "savored",
|
1386 |
-
"savouries": "savories",
|
1387 |
-
"savouring": "savoring",
|
1388 |
-
"savours": "savors",
|
1389 |
-
"savoury": "savory",
|
1390 |
-
"scandalise": "scandalize",
|
1391 |
-
"scandalised": "scandalized",
|
1392 |
-
"scandalises": "scandalizes",
|
1393 |
-
"scandalising": "scandalizing",
|
1394 |
-
"sceptic": "skeptic",
|
1395 |
-
"sceptical": "skeptical",
|
1396 |
-
"sceptically": "skeptically",
|
1397 |
-
"scepticism": "skepticism",
|
1398 |
-
"sceptics": "skeptics",
|
1399 |
-
"sceptre": "scepter",
|
1400 |
-
"sceptres": "scepters",
|
1401 |
-
"scrutinise": "scrutinize",
|
1402 |
-
"scrutinised": "scrutinized",
|
1403 |
-
"scrutinises": "scrutinizes",
|
1404 |
-
"scrutinising": "scrutinizing",
|
1405 |
-
"secularisation": "secularization",
|
1406 |
-
"secularise": "secularize",
|
1407 |
-
"secularised": "secularized",
|
1408 |
-
"secularises": "secularizes",
|
1409 |
-
"secularising": "secularizing",
|
1410 |
-
"sensationalise": "sensationalize",
|
1411 |
-
"sensationalised": "sensationalized",
|
1412 |
-
"sensationalises": "sensationalizes",
|
1413 |
-
"sensationalising": "sensationalizing",
|
1414 |
-
"sensitise": "sensitize",
|
1415 |
-
"sensitised": "sensitized",
|
1416 |
-
"sensitises": "sensitizes",
|
1417 |
-
"sensitising": "sensitizing",
|
1418 |
-
"sentimentalise": "sentimentalize",
|
1419 |
-
"sentimentalised": "sentimentalized",
|
1420 |
-
"sentimentalises": "sentimentalizes",
|
1421 |
-
"sentimentalising": "sentimentalizing",
|
1422 |
-
"sepulchre": "sepulcher",
|
1423 |
-
"sepulchres": "sepulchers",
|
1424 |
-
"serialisation": "serialization",
|
1425 |
-
"serialisations": "serializations",
|
1426 |
-
"serialise": "serialize",
|
1427 |
-
"serialised": "serialized",
|
1428 |
-
"serialises": "serializes",
|
1429 |
-
"serialising": "serializing",
|
1430 |
-
"sermonise": "sermonize",
|
1431 |
-
"sermonised": "sermonized",
|
1432 |
-
"sermonises": "sermonizes",
|
1433 |
-
"sermonising": "sermonizing",
|
1434 |
-
"sheikh": "sheik",
|
1435 |
-
"shovelled": "shoveled",
|
1436 |
-
"shovelling": "shoveling",
|
1437 |
-
"shrivelled": "shriveled",
|
1438 |
-
"shrivelling": "shriveling",
|
1439 |
-
"signalise": "signalize",
|
1440 |
-
"signalised": "signalized",
|
1441 |
-
"signalises": "signalizes",
|
1442 |
-
"signalising": "signalizing",
|
1443 |
-
"signalled": "signaled",
|
1444 |
-
"signalling": "signaling",
|
1445 |
-
"smoulder": "smolder",
|
1446 |
-
"smouldered": "smoldered",
|
1447 |
-
"smouldering": "smoldering",
|
1448 |
-
"smoulders": "smolders",
|
1449 |
-
"snivelled": "sniveled",
|
1450 |
-
"snivelling": "sniveling",
|
1451 |
-
"snorkelled": "snorkeled",
|
1452 |
-
"snorkelling": "snorkeling",
|
1453 |
-
"snowplough": "snowplow",
|
1454 |
-
"snowploughs": "snowplow",
|
1455 |
-
"socialisation": "socialization",
|
1456 |
-
"socialise": "socialize",
|
1457 |
-
"socialised": "socialized",
|
1458 |
-
"socialises": "socializes",
|
1459 |
-
"socialising": "socializing",
|
1460 |
-
"sodomise": "sodomize",
|
1461 |
-
"sodomised": "sodomized",
|
1462 |
-
"sodomises": "sodomizes",
|
1463 |
-
"sodomising": "sodomizing",
|
1464 |
-
"solemnise": "solemnize",
|
1465 |
-
"solemnised": "solemnized",
|
1466 |
-
"solemnises": "solemnizes",
|
1467 |
-
"solemnising": "solemnizing",
|
1468 |
-
"sombre": "somber",
|
1469 |
-
"specialisation": "specialization",
|
1470 |
-
"specialisations": "specializations",
|
1471 |
-
"specialise": "specialize",
|
1472 |
-
"specialised": "specialized",
|
1473 |
-
"specialises": "specializes",
|
1474 |
-
"specialising": "specializing",
|
1475 |
-
"spectre": "specter",
|
1476 |
-
"spectres": "specters",
|
1477 |
-
"spiralled": "spiraled",
|
1478 |
-
"spiralling": "spiraling",
|
1479 |
-
"splendour": "splendor",
|
1480 |
-
"splendours": "splendors",
|
1481 |
-
"squirrelled": "squirreled",
|
1482 |
-
"squirrelling": "squirreling",
|
1483 |
-
"stabilisation": "stabilization",
|
1484 |
-
"stabilise": "stabilize",
|
1485 |
-
"stabilised": "stabilized",
|
1486 |
-
"stabiliser": "stabilizer",
|
1487 |
-
"stabilisers": "stabilizers",
|
1488 |
-
"stabilises": "stabilizes",
|
1489 |
-
"stabilising": "stabilizing",
|
1490 |
-
"standardisation": "standardization",
|
1491 |
-
"standardise": "standardize",
|
1492 |
-
"standardised": "standardized",
|
1493 |
-
"standardises": "standardizes",
|
1494 |
-
"standardising": "standardizing",
|
1495 |
-
"stencilled": "stenciled",
|
1496 |
-
"stencilling": "stenciling",
|
1497 |
-
"sterilisation": "sterilization",
|
1498 |
-
"sterilisations": "sterilizations",
|
1499 |
-
"sterilise": "sterilize",
|
1500 |
-
"sterilised": "sterilized",
|
1501 |
-
"steriliser": "sterilizer",
|
1502 |
-
"sterilisers": "sterilizers",
|
1503 |
-
"sterilises": "sterilizes",
|
1504 |
-
"sterilising": "sterilizing",
|
1505 |
-
"stigmatisation": "stigmatization",
|
1506 |
-
"stigmatise": "stigmatize",
|
1507 |
-
"stigmatised": "stigmatized",
|
1508 |
-
"stigmatises": "stigmatizes",
|
1509 |
-
"stigmatising": "stigmatizing",
|
1510 |
-
"storey": "story",
|
1511 |
-
"storeys": "stories",
|
1512 |
-
"subsidisation": "subsidization",
|
1513 |
-
"subsidise": "subsidize",
|
1514 |
-
"subsidised": "subsidized",
|
1515 |
-
"subsidiser": "subsidizer",
|
1516 |
-
"subsidisers": "subsidizers",
|
1517 |
-
"subsidises": "subsidizes",
|
1518 |
-
"subsidising": "subsidizing",
|
1519 |
-
"succour": "succor",
|
1520 |
-
"succoured": "succored",
|
1521 |
-
"succouring": "succoring",
|
1522 |
-
"succours": "succors",
|
1523 |
-
"sulphate": "sulfate",
|
1524 |
-
"sulphates": "sulfates",
|
1525 |
-
"sulphide": "sulfide",
|
1526 |
-
"sulphides": "sulfides",
|
1527 |
-
"sulphur": "sulfur",
|
1528 |
-
"sulphurous": "sulfurous",
|
1529 |
-
"summarise": "summarize",
|
1530 |
-
"summarised": "summarized",
|
1531 |
-
"summarises": "summarizes",
|
1532 |
-
"summarising": "summarizing",
|
1533 |
-
"swivelled": "swiveled",
|
1534 |
-
"swivelling": "swiveling",
|
1535 |
-
"symbolise": "symbolize",
|
1536 |
-
"symbolised": "symbolized",
|
1537 |
-
"symbolises": "symbolizes",
|
1538 |
-
"symbolising": "symbolizing",
|
1539 |
-
"sympathise": "sympathize",
|
1540 |
-
"sympathised": "sympathized",
|
1541 |
-
"sympathiser": "sympathizer",
|
1542 |
-
"sympathisers": "sympathizers",
|
1543 |
-
"sympathises": "sympathizes",
|
1544 |
-
"sympathising": "sympathizing",
|
1545 |
-
"synchronisation": "synchronization",
|
1546 |
-
"synchronise": "synchronize",
|
1547 |
-
"synchronised": "synchronized",
|
1548 |
-
"synchronises": "synchronizes",
|
1549 |
-
"synchronising": "synchronizing",
|
1550 |
-
"synthesise": "synthesize",
|
1551 |
-
"synthesised": "synthesized",
|
1552 |
-
"synthesiser": "synthesizer",
|
1553 |
-
"synthesisers": "synthesizers",
|
1554 |
-
"synthesises": "synthesizes",
|
1555 |
-
"synthesising": "synthesizing",
|
1556 |
-
"syphon": "siphon",
|
1557 |
-
"syphoned": "siphoned",
|
1558 |
-
"syphoning": "siphoning",
|
1559 |
-
"syphons": "siphons",
|
1560 |
-
"systematisation": "systematization",
|
1561 |
-
"systematise": "systematize",
|
1562 |
-
"systematised": "systematized",
|
1563 |
-
"systematises": "systematizes",
|
1564 |
-
"systematising": "systematizing",
|
1565 |
-
"tantalise": "tantalize",
|
1566 |
-
"tantalised": "tantalized",
|
1567 |
-
"tantalises": "tantalizes",
|
1568 |
-
"tantalising": "tantalizing",
|
1569 |
-
"tantalisingly": "tantalizingly",
|
1570 |
-
"tasselled": "tasseled",
|
1571 |
-
"technicolour": "technicolor",
|
1572 |
-
"temporise": "temporize",
|
1573 |
-
"temporised": "temporized",
|
1574 |
-
"temporises": "temporizes",
|
1575 |
-
"temporising": "temporizing",
|
1576 |
-
"tenderise": "tenderize",
|
1577 |
-
"tenderised": "tenderized",
|
1578 |
-
"tenderises": "tenderizes",
|
1579 |
-
"tenderising": "tenderizing",
|
1580 |
-
"terrorise": "terrorize",
|
1581 |
-
"terrorised": "terrorized",
|
1582 |
-
"terrorises": "terrorizes",
|
1583 |
-
"terrorising": "terrorizing",
|
1584 |
-
"theatre": "theater",
|
1585 |
-
"theatregoer": "theatergoer",
|
1586 |
-
"theatregoers": "theatergoers",
|
1587 |
-
"theatres": "theaters",
|
1588 |
-
"theorise": "theorize",
|
1589 |
-
"theorised": "theorized",
|
1590 |
-
"theorises": "theorizes",
|
1591 |
-
"theorising": "theorizing",
|
1592 |
-
"tonne": "ton",
|
1593 |
-
"tonnes": "tons",
|
1594 |
-
"towelled": "toweled",
|
1595 |
-
"towelling": "toweling",
|
1596 |
-
"toxaemia": "toxemia",
|
1597 |
-
"tranquillise": "tranquilize",
|
1598 |
-
"tranquillised": "tranquilized",
|
1599 |
-
"tranquilliser": "tranquilizer",
|
1600 |
-
"tranquillisers": "tranquilizers",
|
1601 |
-
"tranquillises": "tranquilizes",
|
1602 |
-
"tranquillising": "tranquilizing",
|
1603 |
-
"tranquillity": "tranquility",
|
1604 |
-
"tranquillize": "tranquilize",
|
1605 |
-
"tranquillized": "tranquilized",
|
1606 |
-
"tranquillizer": "tranquilizer",
|
1607 |
-
"tranquillizers": "tranquilizers",
|
1608 |
-
"tranquillizes": "tranquilizes",
|
1609 |
-
"tranquillizing": "tranquilizing",
|
1610 |
-
"tranquilly": "tranquility",
|
1611 |
-
"transistorised": "transistorized",
|
1612 |
-
"traumatise": "traumatize",
|
1613 |
-
"traumatised": "traumatized",
|
1614 |
-
"traumatises": "traumatizes",
|
1615 |
-
"traumatising": "traumatizing",
|
1616 |
-
"travelled": "traveled",
|
1617 |
-
"traveller": "traveler",
|
1618 |
-
"travellers": "travelers",
|
1619 |
-
"travelling": "traveling",
|
1620 |
-
"travelog": "travelogue",
|
1621 |
-
"travelogs": "travelogues",
|
1622 |
-
"trialled": "trialed",
|
1623 |
-
"trialling": "trialing",
|
1624 |
-
"tricolour": "tricolor",
|
1625 |
-
"tricolours": "tricolors",
|
1626 |
-
"trivialise": "trivialize",
|
1627 |
-
"trivialised": "trivialized",
|
1628 |
-
"trivialises": "trivializes",
|
1629 |
-
"trivialising": "trivializing",
|
1630 |
-
"tumour": "tumor",
|
1631 |
-
"tumours": "tumors",
|
1632 |
-
"tunnelled": "tunneled",
|
1633 |
-
"tunnelling": "tunneling",
|
1634 |
-
"tyrannise": "tyrannize",
|
1635 |
-
"tyrannised": "tyrannized",
|
1636 |
-
"tyrannises": "tyrannizes",
|
1637 |
-
"tyrannising": "tyrannizing",
|
1638 |
-
"tyre": "tire",
|
1639 |
-
"tyres": "tires",
|
1640 |
-
"unauthorised": "unauthorized",
|
1641 |
-
"uncivilised": "uncivilized",
|
1642 |
-
"underutilised": "underutilized",
|
1643 |
-
"unequalled": "unequaled",
|
1644 |
-
"unfavourable": "unfavorable",
|
1645 |
-
"unfavourably": "unfavorably",
|
1646 |
-
"unionisation": "unionization",
|
1647 |
-
"unionise": "unionize",
|
1648 |
-
"unionised": "unionized",
|
1649 |
-
"unionises": "unionizes",
|
1650 |
-
"unionising": "unionizing",
|
1651 |
-
"unorganised": "unorganized",
|
1652 |
-
"unravelled": "unraveled",
|
1653 |
-
"unravelling": "unraveling",
|
1654 |
-
"unrecognisable": "unrecognizable",
|
1655 |
-
"unrecognised": "unrecognized",
|
1656 |
-
"unrivalled": "unrivaled",
|
1657 |
-
"unsavoury": "unsavory",
|
1658 |
-
"untrammelled": "untrammeled",
|
1659 |
-
"urbanisation": "urbanization",
|
1660 |
-
"urbanise": "urbanize",
|
1661 |
-
"urbanised": "urbanized",
|
1662 |
-
"urbanises": "urbanizes",
|
1663 |
-
"urbanising": "urbanizing",
|
1664 |
-
"utilisable": "utilizable",
|
1665 |
-
"utilisation": "utilization",
|
1666 |
-
"utilise": "utilize",
|
1667 |
-
"utilised": "utilized",
|
1668 |
-
"utilises": "utilizes",
|
1669 |
-
"utilising": "utilizing",
|
1670 |
-
"valour": "valor",
|
1671 |
-
"vandalise": "vandalize",
|
1672 |
-
"vandalised": "vandalized",
|
1673 |
-
"vandalises": "vandalizes",
|
1674 |
-
"vandalising": "vandalizing",
|
1675 |
-
"vaporisation": "vaporization",
|
1676 |
-
"vaporise": "vaporize",
|
1677 |
-
"vaporised": "vaporized",
|
1678 |
-
"vaporises": "vaporizes",
|
1679 |
-
"vaporising": "vaporizing",
|
1680 |
-
"vapour": "vapor",
|
1681 |
-
"vapours": "vapors",
|
1682 |
-
"verbalise": "verbalize",
|
1683 |
-
"verbalised": "verbalized",
|
1684 |
-
"verbalises": "verbalizes",
|
1685 |
-
"verbalising": "verbalizing",
|
1686 |
-
"victimisation": "victimization",
|
1687 |
-
"victimise": "victimize",
|
1688 |
-
"victimised": "victimized",
|
1689 |
-
"victimises": "victimizes",
|
1690 |
-
"victimising": "victimizing",
|
1691 |
-
"videodisc": "videodisk",
|
1692 |
-
"videodiscs": "videodisks",
|
1693 |
-
"vigour": "vigor",
|
1694 |
-
"visualisation": "visualization",
|
1695 |
-
"visualisations": "visualizations",
|
1696 |
-
"visualise": "visualize",
|
1697 |
-
"visualised": "visualized",
|
1698 |
-
"visualises": "visualizes",
|
1699 |
-
"visualising": "visualizing",
|
1700 |
-
"vocalisation": "vocalization",
|
1701 |
-
"vocalisations": "vocalizations",
|
1702 |
-
"vocalise": "vocalize",
|
1703 |
-
"vocalised": "vocalized",
|
1704 |
-
"vocalises": "vocalizes",
|
1705 |
-
"vocalising": "vocalizing",
|
1706 |
-
"vulcanised": "vulcanized",
|
1707 |
-
"vulgarisation": "vulgarization",
|
1708 |
-
"vulgarise": "vulgarize",
|
1709 |
-
"vulgarised": "vulgarized",
|
1710 |
-
"vulgarises": "vulgarizes",
|
1711 |
-
"vulgarising": "vulgarizing",
|
1712 |
-
"waggon": "wagon",
|
1713 |
-
"waggons": "wagons",
|
1714 |
-
"watercolour": "watercolor",
|
1715 |
-
"watercolours": "watercolors",
|
1716 |
-
"weaselled": "weaseled",
|
1717 |
-
"weaselling": "weaseling",
|
1718 |
-
"westernisation": "westernization",
|
1719 |
-
"westernise": "westernize",
|
1720 |
-
"westernised": "westernized",
|
1721 |
-
"westernises": "westernizes",
|
1722 |
-
"westernising": "westernizing",
|
1723 |
-
"womanise": "womanize",
|
1724 |
-
"womanised": "womanized",
|
1725 |
-
"womaniser": "womanizer",
|
1726 |
-
"womanisers": "womanizers",
|
1727 |
-
"womanises": "womanizes",
|
1728 |
-
"womanising": "womanizing",
|
1729 |
-
"woollen": "woolen",
|
1730 |
-
"woollens": "woolens",
|
1731 |
-
"woollies": "woolies",
|
1732 |
-
"woolly": "wooly",
|
1733 |
-
"worshipped": "worshiped",
|
1734 |
-
"worshipper": "worshiper",
|
1735 |
-
"worshipping": "worshiping",
|
1736 |
-
"yodelled": "yodeled",
|
1737 |
-
"yodelling": "yodeling",
|
1738 |
-
"yoghourt": "yogurt",
|
1739 |
-
"yoghourts": "yogurts",
|
1740 |
-
"yoghurt": "yogurt",
|
1741 |
-
"yoghurts": "yogurts"
|
1742 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SALMONN_PATHS/whisper-large-v2/preprocessor_config.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
SALMONN_PATHS/whisper-large-v2/pytorch_model.bin
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:c3b2988d9bda8155463311709196fec1a4cc4c74dac73db1be1258017d5f2fa6
|
3 |
-
size 6173629930
|
|
|
|
|
|
|
|
SALMONN_PATHS/whisper-large-v2/special_tokens_map.json
DELETED
@@ -1,139 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"additional_special_tokens": [
|
3 |
-
"<|endoftext|>",
|
4 |
-
"<|startoftranscript|>",
|
5 |
-
"<|en|>",
|
6 |
-
"<|zh|>",
|
7 |
-
"<|de|>",
|
8 |
-
"<|es|>",
|
9 |
-
"<|ru|>",
|
10 |
-
"<|ko|>",
|
11 |
-
"<|fr|>",
|
12 |
-
"<|ja|>",
|
13 |
-
"<|pt|>",
|
14 |
-
"<|tr|>",
|
15 |
-
"<|pl|>",
|
16 |
-
"<|ca|>",
|
17 |
-
"<|nl|>",
|
18 |
-
"<|ar|>",
|
19 |
-
"<|sv|>",
|
20 |
-
"<|it|>",
|
21 |
-
"<|id|>",
|
22 |
-
"<|hi|>",
|
23 |
-
"<|fi|>",
|
24 |
-
"<|vi|>",
|
25 |
-
"<|he|>",
|
26 |
-
"<|uk|>",
|
27 |
-
"<|el|>",
|
28 |
-
"<|ms|>",
|
29 |
-
"<|cs|>",
|
30 |
-
"<|ro|>",
|
31 |
-
"<|da|>",
|
32 |
-
"<|hu|>",
|
33 |
-
"<|ta|>",
|
34 |
-
"<|no|>",
|
35 |
-
"<|th|>",
|
36 |
-
"<|ur|>",
|
37 |
-
"<|hr|>",
|
38 |
-
"<|bg|>",
|
39 |
-
"<|lt|>",
|
40 |
-
"<|la|>",
|
41 |
-
"<|mi|>",
|
42 |
-
"<|ml|>",
|
43 |
-
"<|cy|>",
|
44 |
-
"<|sk|>",
|
45 |
-
"<|te|>",
|
46 |
-
"<|fa|>",
|
47 |
-
"<|lv|>",
|
48 |
-
"<|bn|>",
|
49 |
-
"<|sr|>",
|
50 |
-
"<|az|>",
|
51 |
-
"<|sl|>",
|
52 |
-
"<|kn|>",
|
53 |
-
"<|et|>",
|
54 |
-
"<|mk|>",
|
55 |
-
"<|br|>",
|
56 |
-
"<|eu|>",
|
57 |
-
"<|is|>",
|
58 |
-
"<|hy|>",
|
59 |
-
"<|ne|>",
|
60 |
-
"<|mn|>",
|
61 |
-
"<|bs|>",
|
62 |
-
"<|kk|>",
|
63 |
-
"<|sq|>",
|
64 |
-
"<|sw|>",
|
65 |
-
"<|gl|>",
|
66 |
-
"<|mr|>",
|
67 |
-
"<|pa|>",
|
68 |
-
"<|si|>",
|
69 |
-
"<|km|>",
|
70 |
-
"<|sn|>",
|
71 |
-
"<|yo|>",
|
72 |
-
"<|so|>",
|
73 |
-
"<|af|>",
|
74 |
-
"<|oc|>",
|
75 |
-
"<|ka|>",
|
76 |
-
"<|be|>",
|
77 |
-
"<|tg|>",
|
78 |
-
"<|sd|>",
|
79 |
-
"<|gu|>",
|
80 |
-
"<|am|>",
|
81 |
-
"<|yi|>",
|
82 |
-
"<|lo|>",
|
83 |
-
"<|uz|>",
|
84 |
-
"<|fo|>",
|
85 |
-
"<|ht|>",
|
86 |
-
"<|ps|>",
|
87 |
-
"<|tk|>",
|
88 |
-
"<|nn|>",
|
89 |
-
"<|mt|>",
|
90 |
-
"<|sa|>",
|
91 |
-
"<|lb|>",
|
92 |
-
"<|my|>",
|
93 |
-
"<|bo|>",
|
94 |
-
"<|tl|>",
|
95 |
-
"<|mg|>",
|
96 |
-
"<|as|>",
|
97 |
-
"<|tt|>",
|
98 |
-
"<|haw|>",
|
99 |
-
"<|ln|>",
|
100 |
-
"<|ha|>",
|
101 |
-
"<|ba|>",
|
102 |
-
"<|jw|>",
|
103 |
-
"<|su|>",
|
104 |
-
"<|translate|>",
|
105 |
-
"<|transcribe|>",
|
106 |
-
"<|startoflm|>",
|
107 |
-
"<|startofprev|>",
|
108 |
-
"<|nocaptions|>",
|
109 |
-
"<|notimestamps|>"
|
110 |
-
],
|
111 |
-
"bos_token": {
|
112 |
-
"content": "<|endoftext|>",
|
113 |
-
"lstrip": false,
|
114 |
-
"normalized": false,
|
115 |
-
"rstrip": false,
|
116 |
-
"single_word": false
|
117 |
-
},
|
118 |
-
"eos_token": {
|
119 |
-
"content": "<|endoftext|>",
|
120 |
-
"lstrip": false,
|
121 |
-
"normalized": false,
|
122 |
-
"rstrip": false,
|
123 |
-
"single_word": false
|
124 |
-
},
|
125 |
-
"pad_token": {
|
126 |
-
"content": "<|endoftext|>",
|
127 |
-
"lstrip": false,
|
128 |
-
"normalized": false,
|
129 |
-
"rstrip": false,
|
130 |
-
"single_word": false
|
131 |
-
},
|
132 |
-
"unk_token": {
|
133 |
-
"content": "<|endoftext|>",
|
134 |
-
"lstrip": false,
|
135 |
-
"normalized": false,
|
136 |
-
"rstrip": false,
|
137 |
-
"single_word": false
|
138 |
-
}
|
139 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SALMONN_PATHS/whisper-large-v2/tf_model.h5
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:489f5f36ba6e1959913bb77b30baf85e8b791e1e585dec7d65a2e217bfb8be47
|
3 |
-
size 6174574896
|
|
|
|
|
|
|
|
SALMONN_PATHS/whisper-large-v2/tokenizer.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
SALMONN_PATHS/whisper-large-v2/tokenizer_config.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
SALMONN_PATHS/whisper-large-v2/vocab.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
app.py
CHANGED
@@ -28,8 +28,17 @@ from transformers import (
|
|
28 |
WhisperForConditionalGeneration,
|
29 |
)
|
30 |
from transformers.generation import GenerationConfig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
from models.salmonn import SALMONN
|
33 |
|
34 |
DB_PATH = "user_study.json"
|
35 |
DB_DATASET_ID = "WillHeld/DiVAVotes"
|
@@ -92,42 +101,41 @@ qwen_model.generation_config = GenerationConfig.from_pretrained(
|
|
92 |
# beats_path="./SALMONN_PATHS/BEATs_iter3_plus_AS2M_finetuned_on_AS2M_cpt2.pt",
|
93 |
# vicuna_path="./SALMONN_PATHS/vicuna-13b-v1.1",
|
94 |
# low_resource=False,
|
95 |
-
# device="cuda
|
96 |
# )
|
97 |
# salmonn_tokenizer = salmonn_model.llama_tokenizer
|
98 |
|
99 |
|
100 |
-
diva = AutoModel.from_pretrained("WillHeld/DiVA-llama-3-v0-8b", trust_remote_code=True)
|
101 |
-
|
102 |
-
|
103 |
-
@
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
yield response.replace("</s>", "")
|
131 |
|
132 |
|
133 |
@spaces.GPU
|
@@ -206,15 +214,15 @@ def transcribe(audio_input, text_prompt, state, model_order):
|
|
206 |
)
|
207 |
yield (v_resp, s_resp, q_resp)
|
208 |
|
209 |
-
def gen_from_salmonn():
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
|
219 |
def gen_from_qwen():
|
220 |
qwen_resp = qwen_audio(audio_input, text_prompt)
|
@@ -236,16 +244,16 @@ def transcribe(audio_input, text_prompt, state, model_order):
|
|
236 |
order = -1
|
237 |
resp_generators = [
|
238 |
resp_generators[model_order[0]],
|
|
|
239 |
resp_generators[model_order[1]],
|
240 |
-
resp_generators[model_order[2]],
|
241 |
]
|
242 |
for generator in [initial_responses, *resp_generators]:
|
243 |
order += 1
|
244 |
for resps in generator:
|
245 |
v_resp, s_resp, q_resp = resps
|
246 |
resp_1 = resps[model_order[0]]
|
247 |
-
resp_2 = resps[model_order[1]]
|
248 |
-
resp_3 = resps[model_order[
|
249 |
spinner = spinners[spinner_id]
|
250 |
spinner_id = (spinner_id + 1) % 4
|
251 |
yield (
|
@@ -365,7 +373,7 @@ model_names = ["Llama 3 DiVA", "SALMONN", "Qwen Audio"]
|
|
365 |
model_shorthand = ["via", "salmonn", "qwen"]
|
366 |
with gr.Blocks(theme=theme) as demo:
|
367 |
state = gr.State(0)
|
368 |
-
model_order = gr.State([0, 1
|
369 |
with gr.Row():
|
370 |
audio_input = gr.Audio(
|
371 |
sources=["microphone"], streaming=False, label="Audio Input"
|
|
|
28 |
WhisperForConditionalGeneration,
|
29 |
)
|
30 |
from transformers.generation import GenerationConfig
|
31 |
+
import spaces
|
32 |
+
|
33 |
+
# Set an environment variable
|
34 |
+
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
35 |
+
|
36 |
+
model_id = "meta-llama/Meta-Llama-3-8B"
|
37 |
+
# Load the tokenizer and model
|
38 |
+
AutoTokenizer.from_pretrained(model_id)
|
39 |
+
AutoModelForCausalLM.from_pretrained(model_id)
|
40 |
|
41 |
+
#from models.salmonn import SALMONN
|
42 |
|
43 |
DB_PATH = "user_study.json"
|
44 |
DB_DATASET_ID = "WillHeld/DiVAVotes"
|
|
|
101 |
# beats_path="./SALMONN_PATHS/BEATs_iter3_plus_AS2M_finetuned_on_AS2M_cpt2.pt",
|
102 |
# vicuna_path="./SALMONN_PATHS/vicuna-13b-v1.1",
|
103 |
# low_resource=False,
|
104 |
+
# device="cuda",
|
105 |
# )
|
106 |
# salmonn_tokenizer = salmonn_model.llama_tokenizer
|
107 |
|
108 |
|
109 |
+
diva = AutoModel.from_pretrained("WillHeld/DiVA-llama-3-v0-8b", trust_remote_code=True, speech_encoder_device="cuda")
|
110 |
+
|
111 |
+
# @spaces.GPU
|
112 |
+
# @torch.no_grad
|
113 |
+
# def salmonn_fwd(audio_input, prompt, do_sample=False, temperature=0.001):
|
114 |
+
# if audio_input == None:
|
115 |
+
# return ""
|
116 |
+
# sr, y = audio_input
|
117 |
+
# y = y.astype(np.float32)
|
118 |
+
# y /= np.max(np.abs(y))
|
119 |
+
# a = resampler.decode_example(
|
120 |
+
# resampler.encode_example({"array": y, "sampling_rate": sr})
|
121 |
+
# )
|
122 |
+
# sf.write("tmp.wav", a["array"], a["sampling_rate"], format="wav")
|
123 |
+
# streamer = TextIteratorStreamer(salmonn_tokenizer)
|
124 |
+
# with torch.cuda.amp.autocast(dtype=torch.float16):
|
125 |
+
# llm_message = salmonn_model.generate(
|
126 |
+
# wav_path="tmp.wav",
|
127 |
+
# prompt=prompt,
|
128 |
+
# do_sample=False,
|
129 |
+
# top_p=1.0,
|
130 |
+
# temperature=0.0,
|
131 |
+
# device="cuda:0",
|
132 |
+
# streamer=streamer,
|
133 |
+
# )
|
134 |
+
|
135 |
+
# response = ""
|
136 |
+
# for new_tokens in streamer:
|
137 |
+
# response += new_tokens
|
138 |
+
# yield response.replace("</s>", "")
|
|
|
139 |
|
140 |
|
141 |
@spaces.GPU
|
|
|
214 |
)
|
215 |
yield (v_resp, s_resp, q_resp)
|
216 |
|
217 |
+
# def gen_from_salmonn():
|
218 |
+
# salmonn_resp = salmonn_fwd(audio_input, text_prompt)
|
219 |
+
# for resp in salmonn_resp:
|
220 |
+
# s_resp = gr.Textbox(
|
221 |
+
# value=resp,
|
222 |
+
# visible=True,
|
223 |
+
# label=model_names[1] if not anonymous else f"Model {order}",
|
224 |
+
# )
|
225 |
+
# yield (v_resp, s_resp, q_resp)
|
226 |
|
227 |
def gen_from_qwen():
|
228 |
qwen_resp = qwen_audio(audio_input, text_prompt)
|
|
|
244 |
order = -1
|
245 |
resp_generators = [
|
246 |
resp_generators[model_order[0]],
|
247 |
+
#resp_generators[model_order[1]],
|
248 |
resp_generators[model_order[1]],
|
|
|
249 |
]
|
250 |
for generator in [initial_responses, *resp_generators]:
|
251 |
order += 1
|
252 |
for resps in generator:
|
253 |
v_resp, s_resp, q_resp = resps
|
254 |
resp_1 = resps[model_order[0]]
|
255 |
+
resp_2 = s_resp #resps[model_order[1]]
|
256 |
+
resp_3 = resps[model_order[1]]
|
257 |
spinner = spinners[spinner_id]
|
258 |
spinner_id = (spinner_id + 1) % 4
|
259 |
yield (
|
|
|
373 |
model_shorthand = ["via", "salmonn", "qwen"]
|
374 |
with gr.Blocks(theme=theme) as demo:
|
375 |
state = gr.State(0)
|
376 |
+
model_order = gr.State([0, 1])
|
377 |
with gr.Row():
|
378 |
audio_input = gr.Audio(
|
379 |
sources=["microphone"], streaming=False, label="Audio Input"
|
models/salmonn.py
CHANGED
@@ -44,7 +44,7 @@ class SALMONN(nn.Module):
|
|
44 |
speech_qformer_token_num=1,
|
45 |
speech_qformer_layer=2,
|
46 |
lora=True,
|
47 |
-
device="cuda
|
48 |
lora_alpha=32,
|
49 |
lora_rank=8,
|
50 |
lora_dropout=0.1,
|
@@ -66,7 +66,7 @@ class SALMONN(nn.Module):
|
|
66 |
|
67 |
# beats
|
68 |
self.beats_ckpt = beats_path
|
69 |
-
beats_checkpoint = torch.load(self.beats_ckpt
|
70 |
beats_cfg = BEATsConfig(beats_checkpoint["cfg"])
|
71 |
beats = BEATs(beats_cfg)
|
72 |
beats.load_state_dict(beats_checkpoint["model"])
|
@@ -130,7 +130,7 @@ class SALMONN(nn.Module):
|
|
130 |
).to(device)
|
131 |
|
132 |
# load ckpt
|
133 |
-
ckpt_dict = torch.load(ckpt)["model"]
|
134 |
self.load_state_dict(ckpt_dict, strict=False)
|
135 |
|
136 |
def generate(
|
@@ -138,7 +138,7 @@ class SALMONN(nn.Module):
|
|
138 |
wav_path,
|
139 |
prompt,
|
140 |
prompt_pattern="USER: <Speech><SpeechHere></Speech> {}\nASSISTANT:",
|
141 |
-
device="cuda
|
142 |
max_length=200,
|
143 |
max_new_tokens=128,
|
144 |
num_beams=1,
|
|
|
44 |
speech_qformer_token_num=1,
|
45 |
speech_qformer_layer=2,
|
46 |
lora=True,
|
47 |
+
device="cuda",
|
48 |
lora_alpha=32,
|
49 |
lora_rank=8,
|
50 |
lora_dropout=0.1,
|
|
|
66 |
|
67 |
# beats
|
68 |
self.beats_ckpt = beats_path
|
69 |
+
beats_checkpoint = torch.load(self.beats_ckpt)
|
70 |
beats_cfg = BEATsConfig(beats_checkpoint["cfg"])
|
71 |
beats = BEATs(beats_cfg)
|
72 |
beats.load_state_dict(beats_checkpoint["model"])
|
|
|
130 |
).to(device)
|
131 |
|
132 |
# load ckpt
|
133 |
+
ckpt_dict = torch.load(ckpt, map_location="cpu")["model"]
|
134 |
self.load_state_dict(ckpt_dict, strict=False)
|
135 |
|
136 |
def generate(
|
|
|
138 |
wav_path,
|
139 |
prompt,
|
140 |
prompt_pattern="USER: <Speech><SpeechHere></Speech> {}\nASSISTANT:",
|
141 |
+
device="cuda",
|
142 |
max_length=200,
|
143 |
max_new_tokens=128,
|
144 |
num_beams=1,
|
requirements.txt
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
peft
|
4 |
accelerate
|
|
|
|
|
5 |
librosa
|
6 |
torchaudio
|
7 |
transformers_stream_generator
|
|
|
1 |
+
transformers==4.43.3
|
2 |
+
spaces
|
|
|
3 |
accelerate
|
4 |
+
|
5 |
+
peft
|
6 |
librosa
|
7 |
torchaudio
|
8 |
transformers_stream_generator
|