Will Held commited on
Commit
4a1b813
2 Parent(s): c286cf9 85830a6

Remove SALMONN

Browse files
Files changed (34) hide show
  1. .gitignore +2 -0
  2. SALMONN_PATHS/BEATs_iter3_plus_AS2M_finetuned_on_AS2M_cpt2.pt +0 -3
  3. SALMONN_PATHS/SALMONN_SETUP.sh +0 -7
  4. SALMONN_PATHS/salmonn_v1.pth +0 -3
  5. SALMONN_PATHS/vicuna-13b-v1.1/.gitattributes +0 -34
  6. SALMONN_PATHS/vicuna-13b-v1.1/README.md +0 -53
  7. SALMONN_PATHS/vicuna-13b-v1.1/config.json +0 -23
  8. SALMONN_PATHS/vicuna-13b-v1.1/generation_config.json +0 -7
  9. SALMONN_PATHS/vicuna-13b-v1.1/pytorch_model-00001-of-00003.bin +0 -3
  10. SALMONN_PATHS/vicuna-13b-v1.1/pytorch_model-00002-of-00003.bin +0 -3
  11. SALMONN_PATHS/vicuna-13b-v1.1/pytorch_model-00003-of-00003.bin +0 -3
  12. SALMONN_PATHS/vicuna-13b-v1.1/pytorch_model.bin.index.json +0 -410
  13. SALMONN_PATHS/vicuna-13b-v1.1/special_tokens_map.json +0 -23
  14. SALMONN_PATHS/vicuna-13b-v1.1/tokenizer.model +0 -3
  15. SALMONN_PATHS/vicuna-13b-v1.1/tokenizer_config.json +0 -33
  16. SALMONN_PATHS/whisper-large-v2/.gitattributes +0 -34
  17. SALMONN_PATHS/whisper-large-v2/README.md +0 -395
  18. SALMONN_PATHS/whisper-large-v2/added_tokens.json +0 -1609
  19. SALMONN_PATHS/whisper-large-v2/config.json +0 -144
  20. SALMONN_PATHS/whisper-large-v2/flax_model.msgpack +0 -3
  21. SALMONN_PATHS/whisper-large-v2/generation_config.json +0 -316
  22. SALMONN_PATHS/whisper-large-v2/merges.txt +0 -0
  23. SALMONN_PATHS/whisper-large-v2/model.safetensors +0 -3
  24. SALMONN_PATHS/whisper-large-v2/normalizer.json +0 -1742
  25. SALMONN_PATHS/whisper-large-v2/preprocessor_config.json +0 -0
  26. SALMONN_PATHS/whisper-large-v2/pytorch_model.bin +0 -3
  27. SALMONN_PATHS/whisper-large-v2/special_tokens_map.json +0 -139
  28. SALMONN_PATHS/whisper-large-v2/tf_model.h5 +0 -3
  29. SALMONN_PATHS/whisper-large-v2/tokenizer.json +0 -0
  30. SALMONN_PATHS/whisper-large-v2/tokenizer_config.json +0 -0
  31. SALMONN_PATHS/whisper-large-v2/vocab.json +0 -0
  32. app.py +54 -46
  33. models/salmonn.py +4 -4
  34. requirements.txt +4 -3
.gitignore ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ *__pycache__*
2
+ user_study.json
SALMONN_PATHS/BEATs_iter3_plus_AS2M_finetuned_on_AS2M_cpt2.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:e5815275a04b6885e7b8af63d120b29bffae2cd2225cf4915e1ec6d819d3022c
3
- size 363145291
 
 
 
 
SALMONN_PATHS/SALMONN_SETUP.sh DELETED
@@ -1,7 +0,0 @@
1
- git clone https://huggingface.co/tsinghua-ee/SALMONN/
2
- mv SALMONN/salmonn_v1.pth .
3
- rm -r SALMONN
4
- git clone https://huggingface.co/lmsys/vicuna-13b-v1.1
5
- git clone https://huggingface.co/openai/whisper-large-v2
6
- wget https://huggingface.co/spaces/fffiloni/SALMONN-7B-gradio/resolve/677c0125de736ab92751385e1e8664cd03c2ce0d/beats/BEATs_iter3_plus_AS2M_finetuned_on_AS2M_cpt2.pt?download=true
7
- mv BEATs_iter3_plus_AS2M_finetuned_on_AS2M_cpt2.pt?download=true BEATs_iter3_plus_AS2M_finetuned_on_AS2M_cpt2.pt
 
 
 
 
 
 
 
 
SALMONN_PATHS/salmonn_v1.pth DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:709c665b25ef05b48985584ec31d6f15018b754abf47b9c33ed9a278285bbae0
3
- size 400466533
 
 
 
 
SALMONN_PATHS/vicuna-13b-v1.1/.gitattributes DELETED
@@ -1,34 +0,0 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ckpt filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
- *.model filter=lfs diff=lfs merge=lfs -text
13
- *.msgpack filter=lfs diff=lfs merge=lfs -text
14
- *.npy filter=lfs diff=lfs merge=lfs -text
15
- *.npz filter=lfs diff=lfs merge=lfs -text
16
- *.onnx filter=lfs diff=lfs merge=lfs -text
17
- *.ot filter=lfs diff=lfs merge=lfs -text
18
- *.parquet filter=lfs diff=lfs merge=lfs -text
19
- *.pb filter=lfs diff=lfs merge=lfs -text
20
- *.pickle filter=lfs diff=lfs merge=lfs -text
21
- *.pkl filter=lfs diff=lfs merge=lfs -text
22
- *.pt filter=lfs diff=lfs merge=lfs -text
23
- *.pth filter=lfs diff=lfs merge=lfs -text
24
- *.rar filter=lfs diff=lfs merge=lfs -text
25
- *.safetensors filter=lfs diff=lfs merge=lfs -text
26
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
- *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tflite filter=lfs diff=lfs merge=lfs -text
29
- *.tgz filter=lfs diff=lfs merge=lfs -text
30
- *.wasm filter=lfs diff=lfs merge=lfs -text
31
- *.xz filter=lfs diff=lfs merge=lfs -text
32
- *.zip filter=lfs diff=lfs merge=lfs -text
33
- *.zst filter=lfs diff=lfs merge=lfs -text
34
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SALMONN_PATHS/vicuna-13b-v1.1/README.md DELETED
@@ -1,53 +0,0 @@
1
- ---
2
- inference: false
3
- ---
4
-
5
- **NOTE: New version available**
6
- Please check out a newer version of the weights [here](https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md).
7
-
8
- <br>
9
-
10
- # Vicuna Model Card
11
-
12
- ## Model Details
13
-
14
- Vicuna is a chat assistant trained by fine-tuning LLaMA on user-shared conversations collected from ShareGPT.
15
-
16
- - **Developed by:** [LMSYS](https://lmsys.org/)
17
- - **Model type:** An auto-regressive language model based on the transformer architecture.
18
- - **License:** Non-commercial license
19
- - **Finetuned from model:** [LLaMA](https://arxiv.org/abs/2302.13971).
20
-
21
- ### Model Sources
22
-
23
- - **Repository:** https://github.com/lm-sys/FastChat
24
- - **Blog:** https://lmsys.org/blog/2023-03-30-vicuna/
25
- - **Paper:** https://arxiv.org/abs/2306.05685
26
- - **Demo:** https://chat.lmsys.org/
27
-
28
- ## Uses
29
-
30
- The primary use of Vicuna is research on large language models and chatbots.
31
- The primary intended users of the model are researchers and hobbyists in natural language processing, machine learning, and artificial intelligence.
32
-
33
- ## How to Get Started with the Model
34
-
35
- Command line interface: https://github.com/lm-sys/FastChat#vicuna-weights.
36
- APIs (OpenAI API, Huggingface API): https://github.com/lm-sys/FastChat/tree/main#api.
37
-
38
- ## Training Details
39
-
40
- Vicuna v1.1 is fine-tuned from LLaMA with supervised instruction fine-tuning.
41
- The training data is around 70K conversations collected from ShareGPT.com.
42
- See more details in the "Training Details of Vicuna Models" section in the appendix of this [paper](https://arxiv.org/pdf/2306.05685.pdf).
43
-
44
- ## Evaluation
45
-
46
- Vicuna is evaluated with standard benchmarks, human preference, and LLM-as-a-judge. See more details in this [paper](https://arxiv.org/pdf/2306.05685.pdf) and [leaderboard](https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard).
47
-
48
- ## Difference between different versions of Vicuna
49
- See [vicuna_weights_version.md](https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md)
50
-
51
- ## Acknowledgement
52
-
53
- Special thanks to [@TheBloke](https://huggingface.co/TheBloke) for hosting this merged version of weights earlier.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SALMONN_PATHS/vicuna-13b-v1.1/config.json DELETED
@@ -1,23 +0,0 @@
1
- {
2
- "_name_or_path": "/workspace/llama-13B-HF",
3
- "architectures": [
4
- "LlamaForCausalLM"
5
- ],
6
- "bos_token_id": 1,
7
- "eos_token_id": 2,
8
- "hidden_act": "silu",
9
- "hidden_size": 5120,
10
- "initializer_range": 0.02,
11
- "intermediate_size": 13824,
12
- "max_position_embeddings": 2048,
13
- "model_type": "llama",
14
- "num_attention_heads": 40,
15
- "num_hidden_layers": 40,
16
- "pad_token_id": 0,
17
- "rms_norm_eps": 1e-06,
18
- "tie_word_embeddings": false,
19
- "torch_dtype": "float16",
20
- "transformers_version": "4.29.0.dev0",
21
- "use_cache": true,
22
- "vocab_size": 32000
23
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SALMONN_PATHS/vicuna-13b-v1.1/generation_config.json DELETED
@@ -1,7 +0,0 @@
1
- {
2
- "_from_model_config": true,
3
- "bos_token_id": 1,
4
- "eos_token_id": 2,
5
- "pad_token_id": 0,
6
- "transformers_version": "4.28.0.dev0"
7
- }
 
 
 
 
 
 
 
 
SALMONN_PATHS/vicuna-13b-v1.1/pytorch_model-00001-of-00003.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:7e754ec47918eb6569468a1fbdc68ee376202eb4e34c97a05951d894e195d296
3
- size 9948728430
 
 
 
 
SALMONN_PATHS/vicuna-13b-v1.1/pytorch_model-00002-of-00003.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:eecea1120efcd762af48bf54d7d5ff9ef3128cc33f144533dfc5a926fb6c541c
3
- size 9904165024
 
 
 
 
SALMONN_PATHS/vicuna-13b-v1.1/pytorch_model-00003-of-00003.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:bf1ed63a11c0d9176006fe49914eaa911f0e73c2aaf614c11f8534ec934d7a89
3
- size 6506663689
 
 
 
 
SALMONN_PATHS/vicuna-13b-v1.1/pytorch_model.bin.index.json DELETED
@@ -1,410 +0,0 @@
1
- {
2
- "metadata": {
3
- "total_size": 26031738880
4
- },
5
- "weight_map": {
6
- "lm_head.weight": "pytorch_model-00003-of-00003.bin",
7
- "model.embed_tokens.weight": "pytorch_model-00001-of-00003.bin",
8
- "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
9
- "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
10
- "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
11
- "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
12
- "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
13
- "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
14
- "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
15
- "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
16
- "model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
17
- "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
18
- "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
19
- "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
20
- "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
21
- "model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
22
- "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
23
- "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
24
- "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
25
- "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
26
- "model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
27
- "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
28
- "model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
29
- "model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
30
- "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
31
- "model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
32
- "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
33
- "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
34
- "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
35
- "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
36
- "model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
37
- "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
38
- "model.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
39
- "model.layers.11.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
40
- "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
41
- "model.layers.11.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
42
- "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
43
- "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
44
- "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
45
- "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
46
- "model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
47
- "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
48
- "model.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
49
- "model.layers.12.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
50
- "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
51
- "model.layers.12.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
52
- "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
53
- "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
54
- "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
55
- "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
56
- "model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
57
- "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
58
- "model.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
59
- "model.layers.13.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
60
- "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
61
- "model.layers.13.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
62
- "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
63
- "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
64
- "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
65
- "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
66
- "model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
67
- "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
68
- "model.layers.14.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
69
- "model.layers.14.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
70
- "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
71
- "model.layers.14.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
72
- "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
73
- "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
74
- "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
75
- "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
76
- "model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
77
- "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
78
- "model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
79
- "model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
80
- "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
81
- "model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
82
- "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
83
- "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
84
- "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
85
- "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
86
- "model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
87
- "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
88
- "model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
89
- "model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
90
- "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
91
- "model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
92
- "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
93
- "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
94
- "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
95
- "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
96
- "model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
97
- "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
98
- "model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
99
- "model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
100
- "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
101
- "model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
102
- "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
103
- "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
104
- "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
105
- "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
106
- "model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
107
- "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
108
- "model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
109
- "model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
110
- "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
111
- "model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
112
- "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
113
- "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
114
- "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
115
- "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
116
- "model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
117
- "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
118
- "model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
119
- "model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
120
- "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
121
- "model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
122
- "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
123
- "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
124
- "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
125
- "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
126
- "model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
127
- "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
128
- "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
129
- "model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
130
- "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
131
- "model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
132
- "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
133
- "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
134
- "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
135
- "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
136
- "model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
137
- "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
138
- "model.layers.20.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
139
- "model.layers.20.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
140
- "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
141
- "model.layers.20.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
142
- "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
143
- "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
144
- "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
145
- "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
146
- "model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
147
- "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
148
- "model.layers.21.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
149
- "model.layers.21.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
150
- "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
151
- "model.layers.21.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
152
- "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
153
- "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
154
- "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
155
- "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
156
- "model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
157
- "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
158
- "model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
159
- "model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
160
- "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
161
- "model.layers.22.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
162
- "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
163
- "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
164
- "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
165
- "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
166
- "model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
167
- "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
168
- "model.layers.23.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
169
- "model.layers.23.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
170
- "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
171
- "model.layers.23.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
172
- "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
173
- "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
174
- "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
175
- "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
176
- "model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
177
- "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
178
- "model.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
179
- "model.layers.24.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
180
- "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
181
- "model.layers.24.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
182
- "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
183
- "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
184
- "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
185
- "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
186
- "model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
187
- "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
188
- "model.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
189
- "model.layers.25.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
190
- "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
191
- "model.layers.25.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
192
- "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
193
- "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
194
- "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
195
- "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
196
- "model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
197
- "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
198
- "model.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
199
- "model.layers.26.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
200
- "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
201
- "model.layers.26.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
202
- "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
203
- "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
204
- "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
205
- "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
206
- "model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
207
- "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
208
- "model.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
209
- "model.layers.27.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
210
- "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
211
- "model.layers.27.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
212
- "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
213
- "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
214
- "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
215
- "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
216
- "model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
217
- "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
218
- "model.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
219
- "model.layers.28.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
220
- "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
221
- "model.layers.28.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
222
- "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
223
- "model.layers.28.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
224
- "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
225
- "model.layers.28.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
226
- "model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
227
- "model.layers.28.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
228
- "model.layers.29.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
229
- "model.layers.29.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
230
- "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
231
- "model.layers.29.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
232
- "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
233
- "model.layers.29.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
234
- "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
235
- "model.layers.29.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
236
- "model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
237
- "model.layers.29.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
238
- "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
239
- "model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
240
- "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
241
- "model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
242
- "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
243
- "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
244
- "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
245
- "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
246
- "model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
247
- "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
248
- "model.layers.30.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
249
- "model.layers.30.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
250
- "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
251
- "model.layers.30.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
252
- "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
253
- "model.layers.30.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
254
- "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
255
- "model.layers.30.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
256
- "model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
257
- "model.layers.30.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
258
- "model.layers.31.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
259
- "model.layers.31.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
260
- "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
261
- "model.layers.31.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
262
- "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
263
- "model.layers.31.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
264
- "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
265
- "model.layers.31.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
266
- "model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
267
- "model.layers.31.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
268
- "model.layers.32.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
269
- "model.layers.32.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
270
- "model.layers.32.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
271
- "model.layers.32.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
272
- "model.layers.32.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
273
- "model.layers.32.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
274
- "model.layers.32.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
275
- "model.layers.32.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
276
- "model.layers.32.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
277
- "model.layers.32.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
278
- "model.layers.33.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
279
- "model.layers.33.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
280
- "model.layers.33.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
281
- "model.layers.33.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
282
- "model.layers.33.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
283
- "model.layers.33.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
284
- "model.layers.33.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
285
- "model.layers.33.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
286
- "model.layers.33.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
287
- "model.layers.33.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
288
- "model.layers.34.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
289
- "model.layers.34.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
290
- "model.layers.34.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
291
- "model.layers.34.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
292
- "model.layers.34.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
293
- "model.layers.34.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
294
- "model.layers.34.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
295
- "model.layers.34.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
296
- "model.layers.34.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
297
- "model.layers.34.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
298
- "model.layers.35.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
299
- "model.layers.35.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
300
- "model.layers.35.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
301
- "model.layers.35.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
302
- "model.layers.35.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
303
- "model.layers.35.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
304
- "model.layers.35.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
305
- "model.layers.35.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
306
- "model.layers.35.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
307
- "model.layers.35.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
308
- "model.layers.36.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
309
- "model.layers.36.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
310
- "model.layers.36.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
311
- "model.layers.36.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
312
- "model.layers.36.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
313
- "model.layers.36.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
314
- "model.layers.36.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
315
- "model.layers.36.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
316
- "model.layers.36.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
317
- "model.layers.36.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
318
- "model.layers.37.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
319
- "model.layers.37.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
320
- "model.layers.37.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
321
- "model.layers.37.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
322
- "model.layers.37.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
323
- "model.layers.37.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
324
- "model.layers.37.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
325
- "model.layers.37.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
326
- "model.layers.37.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
327
- "model.layers.37.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
328
- "model.layers.38.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
329
- "model.layers.38.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
330
- "model.layers.38.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
331
- "model.layers.38.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
332
- "model.layers.38.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
333
- "model.layers.38.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
334
- "model.layers.38.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
335
- "model.layers.38.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
336
- "model.layers.38.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
337
- "model.layers.38.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
338
- "model.layers.39.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
339
- "model.layers.39.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
340
- "model.layers.39.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
341
- "model.layers.39.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
342
- "model.layers.39.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
343
- "model.layers.39.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
344
- "model.layers.39.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
345
- "model.layers.39.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
346
- "model.layers.39.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
347
- "model.layers.39.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
348
- "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
349
- "model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
350
- "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
351
- "model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
352
- "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
353
- "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
354
- "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
355
- "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
356
- "model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
357
- "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
358
- "model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
359
- "model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
360
- "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
361
- "model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
362
- "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
363
- "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
364
- "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
365
- "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
366
- "model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
367
- "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
368
- "model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
369
- "model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
370
- "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
371
- "model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
372
- "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
373
- "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
374
- "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
375
- "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
376
- "model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
377
- "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
378
- "model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
379
- "model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
380
- "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
381
- "model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
382
- "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
383
- "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
384
- "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
385
- "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
386
- "model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
387
- "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
388
- "model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
389
- "model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
390
- "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
391
- "model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
392
- "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
393
- "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
394
- "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
395
- "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
396
- "model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
397
- "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
398
- "model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
399
- "model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
400
- "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
401
- "model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
402
- "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
403
- "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
404
- "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
405
- "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
406
- "model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
407
- "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
408
- "model.norm.weight": "pytorch_model-00003-of-00003.bin"
409
- }
410
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SALMONN_PATHS/vicuna-13b-v1.1/special_tokens_map.json DELETED
@@ -1,23 +0,0 @@
1
- {
2
- "bos_token": {
3
- "content": "<s>",
4
- "lstrip": false,
5
- "normalized": true,
6
- "rstrip": false,
7
- "single_word": false
8
- },
9
- "eos_token": {
10
- "content": "</s>",
11
- "lstrip": false,
12
- "normalized": true,
13
- "rstrip": false,
14
- "single_word": false
15
- },
16
- "unk_token": {
17
- "content": "<unk>",
18
- "lstrip": false,
19
- "normalized": true,
20
- "rstrip": false,
21
- "single_word": false
22
- }
23
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SALMONN_PATHS/vicuna-13b-v1.1/tokenizer.model DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
- size 499723
 
 
 
 
SALMONN_PATHS/vicuna-13b-v1.1/tokenizer_config.json DELETED
@@ -1,33 +0,0 @@
1
- {
2
- "add_bos_token": true,
3
- "add_eos_token": false,
4
- "bos_token": {
5
- "__type": "AddedToken",
6
- "content": "<s>",
7
- "lstrip": false,
8
- "normalized": true,
9
- "rstrip": false,
10
- "single_word": false
11
- },
12
- "clean_up_tokenization_spaces": false,
13
- "eos_token": {
14
- "__type": "AddedToken",
15
- "content": "</s>",
16
- "lstrip": false,
17
- "normalized": true,
18
- "rstrip": false,
19
- "single_word": false
20
- },
21
- "model_max_length": 1000000000000000019884624838656,
22
- "pad_token": null,
23
- "sp_model_kwargs": {},
24
- "tokenizer_class": "LlamaTokenizer",
25
- "unk_token": {
26
- "__type": "AddedToken",
27
- "content": "<unk>",
28
- "lstrip": false,
29
- "normalized": true,
30
- "rstrip": false,
31
- "single_word": false
32
- }
33
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SALMONN_PATHS/whisper-large-v2/.gitattributes DELETED
@@ -1,34 +0,0 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ckpt filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
- *.model filter=lfs diff=lfs merge=lfs -text
13
- *.msgpack filter=lfs diff=lfs merge=lfs -text
14
- *.npy filter=lfs diff=lfs merge=lfs -text
15
- *.npz filter=lfs diff=lfs merge=lfs -text
16
- *.onnx filter=lfs diff=lfs merge=lfs -text
17
- *.ot filter=lfs diff=lfs merge=lfs -text
18
- *.parquet filter=lfs diff=lfs merge=lfs -text
19
- *.pb filter=lfs diff=lfs merge=lfs -text
20
- *.pickle filter=lfs diff=lfs merge=lfs -text
21
- *.pkl filter=lfs diff=lfs merge=lfs -text
22
- *.pt filter=lfs diff=lfs merge=lfs -text
23
- *.pth filter=lfs diff=lfs merge=lfs -text
24
- *.rar filter=lfs diff=lfs merge=lfs -text
25
- *.safetensors filter=lfs diff=lfs merge=lfs -text
26
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
- *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tflite filter=lfs diff=lfs merge=lfs -text
29
- *.tgz filter=lfs diff=lfs merge=lfs -text
30
- *.wasm filter=lfs diff=lfs merge=lfs -text
31
- *.xz filter=lfs diff=lfs merge=lfs -text
32
- *.zip filter=lfs diff=lfs merge=lfs -text
33
- *.zst filter=lfs diff=lfs merge=lfs -text
34
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SALMONN_PATHS/whisper-large-v2/README.md DELETED
@@ -1,395 +0,0 @@
1
- ---
2
- language:
3
- - en
4
- - zh
5
- - de
6
- - es
7
- - ru
8
- - ko
9
- - fr
10
- - ja
11
- - pt
12
- - tr
13
- - pl
14
- - ca
15
- - nl
16
- - ar
17
- - sv
18
- - it
19
- - id
20
- - hi
21
- - fi
22
- - vi
23
- - he
24
- - uk
25
- - el
26
- - ms
27
- - cs
28
- - ro
29
- - da
30
- - hu
31
- - ta
32
- - no
33
- - th
34
- - ur
35
- - hr
36
- - bg
37
- - lt
38
- - la
39
- - mi
40
- - ml
41
- - cy
42
- - sk
43
- - te
44
- - fa
45
- - lv
46
- - bn
47
- - sr
48
- - az
49
- - sl
50
- - kn
51
- - et
52
- - mk
53
- - br
54
- - eu
55
- - is
56
- - hy
57
- - ne
58
- - mn
59
- - bs
60
- - kk
61
- - sq
62
- - sw
63
- - gl
64
- - mr
65
- - pa
66
- - si
67
- - km
68
- - sn
69
- - yo
70
- - so
71
- - af
72
- - oc
73
- - ka
74
- - be
75
- - tg
76
- - sd
77
- - gu
78
- - am
79
- - yi
80
- - lo
81
- - uz
82
- - fo
83
- - ht
84
- - ps
85
- - tk
86
- - nn
87
- - mt
88
- - sa
89
- - lb
90
- - my
91
- - bo
92
- - tl
93
- - mg
94
- - as
95
- - tt
96
- - haw
97
- - ln
98
- - ha
99
- - ba
100
- - jw
101
- - su
102
- tags:
103
- - audio
104
- - automatic-speech-recognition
105
- - hf-asr-leaderboard
106
- widget:
107
- - example_title: Librispeech sample 1
108
- src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
109
- - example_title: Librispeech sample 2
110
- src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
111
- pipeline_tag: automatic-speech-recognition
112
- license: apache-2.0
113
- ---
114
-
115
- # Whisper
116
-
117
- Whisper is a pre-trained model for automatic speech recognition (ASR) and speech translation. Trained on 680k hours
118
- of labelled data, Whisper models demonstrate a strong ability to generalise to many datasets and domains **without** the need
119
- for fine-tuning.
120
-
121
- Whisper was proposed in the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://arxiv.org/abs/2212.04356)
122
- by Alec Radford et al. from OpenAI. The original code repository can be found [here](https://github.com/openai/whisper).
123
-
124
- Compared to the Whisper large model, the large-v2 model is trained for 2.5x more epochs with added regularization
125
- for improved performance.
126
-
127
- **Disclaimer**: Content for this model card has partly been written by the Hugging Face team, and parts of it were
128
- copied and pasted from the original model card.
129
-
130
- ## Model details
131
-
132
- Whisper is a Transformer based encoder-decoder model, also referred to as a _sequence-to-sequence_ model.
133
- It was trained on 680k hours of labelled speech data annotated using large-scale weak supervision.
134
-
135
- The models were trained on either English-only data or multilingual data. The English-only models were trained
136
- on the task of speech recognition. The multilingual models were trained on both speech recognition and speech
137
- translation. For speech recognition, the model predicts transcriptions in the *same* language as the audio.
138
- For speech translation, the model predicts transcriptions to a *different* language to the audio.
139
-
140
- Whisper checkpoints come in five configurations of varying model sizes.
141
- The smallest four are trained on either English-only or multilingual data.
142
- The largest checkpoints are multilingual only. All ten of the pre-trained checkpoints
143
- are available on the [Hugging Face Hub](https://huggingface.co/models?search=openai/whisper). The
144
- checkpoints are summarised in the following table with links to the models on the Hub:
145
-
146
- | Size | Parameters | English-only | Multilingual |
147
- |----------|------------|------------------------------------------------------|-----------------------------------------------------|
148
- | tiny | 39 M | [✓](https://huggingface.co/openai/whisper-tiny.en) | [✓](https://huggingface.co/openai/whisper-tiny) |
149
- | base | 74 M | [✓](https://huggingface.co/openai/whisper-base.en) | [✓](https://huggingface.co/openai/whisper-base) |
150
- | small | 244 M | [✓](https://huggingface.co/openai/whisper-small.en) | [✓](https://huggingface.co/openai/whisper-small) |
151
- | medium | 769 M | [✓](https://huggingface.co/openai/whisper-medium.en) | [✓](https://huggingface.co/openai/whisper-medium) |
152
- | large | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large) |
153
- | large-v2 | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large-v2) |
154
-
155
- # Usage
156
-
157
- To transcribe audio samples, the model has to be used alongside a [`WhisperProcessor`](https://huggingface.co/docs/transformers/model_doc/whisper#transformers.WhisperProcessor).
158
-
159
- The `WhisperProcessor` is used to:
160
- 1. Pre-process the audio inputs (converting them to log-Mel spectrograms for the model)
161
- 2. Post-process the model outputs (converting them from tokens to text)
162
-
163
- The model is informed of which task to perform (transcription or translation) by passing the appropriate "context tokens". These context tokens
164
- are a sequence of tokens that are given to the decoder at the start of the decoding process, and take the following order:
165
- 1. The transcription always starts with the `<|startoftranscript|>` token
166
- 2. The second token is the language token (e.g. `<|en|>` for English)
167
- 3. The third token is the "task token". It can take one of two values: `<|transcribe|>` for speech recognition or `<|translate|>` for speech translation
168
- 4. In addition, a `<|notimestamps|>` token is added if the model should not include timestamp prediction
169
-
170
- Thus, a typical sequence of context tokens might look as follows:
171
- ```
172
- <|startoftranscript|> <|en|> <|transcribe|> <|notimestamps|>
173
- ```
174
- Which tells the model to decode in English, under the task of speech recognition, and not to predict timestamps.
175
-
176
- These tokens can either be forced or un-forced. If they are forced, the model is made to predict each token at
177
- each position. This allows one to control the output language and task for the Whisper model. If they are un-forced,
178
- the Whisper model will automatically predict the output langauge and task itself.
179
-
180
- The context tokens can be set accordingly:
181
-
182
- ```python
183
- model.config.forced_decoder_ids = WhisperProcessor.get_decoder_prompt_ids(language="english", task="transcribe")
184
- ```
185
-
186
- Which forces the model to predict in English under the task of speech recognition.
187
-
188
- ## Transcription
189
-
190
- ### English to English
191
- In this example, the context tokens are 'unforced', meaning the model automatically predicts the output language
192
- (English) and task (transcribe).
193
-
194
- ```python
195
- >>> from transformers import WhisperProcessor, WhisperForConditionalGeneration
196
- >>> from datasets import load_dataset
197
-
198
- >>> # load model and processor
199
- >>> processor = WhisperProcessor.from_pretrained("openai/whisper-large-v2")
200
- >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large-v2")
201
- >>> model.config.forced_decoder_ids = None
202
-
203
- >>> # load dummy dataset and read audio files
204
- >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
205
- >>> sample = ds[0]["audio"]
206
- >>> input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features
207
-
208
- >>> # generate token ids
209
- >>> predicted_ids = model.generate(input_features)
210
- >>> # decode token ids to text
211
- >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False)
212
- ['<|startoftranscript|><|en|><|transcribe|><|notimestamps|> Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.<|endoftext|>']
213
-
214
- >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
215
- [' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.']
216
- ```
217
- The context tokens can be removed from the start of the transcription by setting `skip_special_tokens=True`.
218
-
219
- ### French to French
220
- The following example demonstrates French to French transcription by setting the decoder ids appropriately.
221
-
222
- ```python
223
- >>> from transformers import WhisperProcessor, WhisperForConditionalGeneration
224
- >>> from datasets import Audio, load_dataset
225
-
226
- >>> # load model and processor
227
- >>> processor = WhisperProcessor.from_pretrained("openai/whisper-large-v2")
228
- >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large-v2")
229
- >>> forced_decoder_ids = processor.get_decoder_prompt_ids(language="french", task="transcribe")
230
-
231
- >>> # load streaming dataset and read first audio sample
232
- >>> ds = load_dataset("common_voice", "fr", split="test", streaming=True)
233
- >>> ds = ds.cast_column("audio", Audio(sampling_rate=16_000))
234
- >>> input_speech = next(iter(ds))["audio"]
235
- >>> input_features = processor(input_speech["array"], sampling_rate=input_speech["sampling_rate"], return_tensors="pt").input_features
236
-
237
- >>> # generate token ids
238
- >>> predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids)
239
- >>> # decode token ids to text
240
- >>> transcription = processor.batch_decode(predicted_ids)
241
- ['<|startoftranscript|><|fr|><|transcribe|><|notimestamps|> Un vrai travail intéressant va enfin être mené sur ce sujet.<|endoftext|>']
242
-
243
- >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
244
- [' Un vrai travail intéressant va enfin être mené sur ce sujet.']
245
- ```
246
-
247
- ## Translation
248
- Setting the task to "translate" forces the Whisper model to perform speech translation.
249
-
250
- ### French to English
251
-
252
- ```python
253
- >>> from transformers import WhisperProcessor, WhisperForConditionalGeneration
254
- >>> from datasets import Audio, load_dataset
255
-
256
- >>> # load model and processor
257
- >>> processor = WhisperProcessor.from_pretrained("openai/whisper-large-v2")
258
- >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large-v2")
259
- >>> forced_decoder_ids = processor.get_decoder_prompt_ids(language="french", task="translate")
260
-
261
- >>> # load streaming dataset and read first audio sample
262
- >>> ds = load_dataset("common_voice", "fr", split="test", streaming=True)
263
- >>> ds = ds.cast_column("audio", Audio(sampling_rate=16_000))
264
- >>> input_speech = next(iter(ds))["audio"]
265
- >>> input_features = processor(input_speech["array"], sampling_rate=input_speech["sampling_rate"], return_tensors="pt").input_features
266
-
267
- >>> # generate token ids
268
- >>> predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids)
269
- >>> # decode token ids to text
270
- >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
271
- [' A very interesting work, we will finally be given on this subject.']
272
- ```
273
-
274
- ## Evaluation
275
-
276
- This code snippet shows how to evaluate Whisper Large on [LibriSpeech test-clean](https://huggingface.co/datasets/librispeech_asr):
277
-
278
- ```python
279
- >>> from datasets import load_dataset
280
- >>> from transformers import WhisperForConditionalGeneration, WhisperProcessor
281
- >>> import torch
282
- >>> from evaluate import load
283
-
284
- >>> librispeech_test_clean = load_dataset("librispeech_asr", "clean", split="test")
285
-
286
- >>> processor = WhisperProcessor.from_pretrained("openai/whisper-large-v2")
287
- >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large-v2").to("cuda")
288
-
289
- >>> def map_to_pred(batch):
290
- >>> audio = batch["audio"]
291
- >>> input_features = processor(audio["array"], sampling_rate=audio["sampling_rate"], return_tensors="pt").input_features
292
- >>> batch["reference"] = processor.tokenizer._normalize(batch['text'])
293
- >>>
294
- >>> with torch.no_grad():
295
- >>> predicted_ids = model.generate(input_features.to("cuda"))[0]
296
- >>> transcription = processor.decode(predicted_ids)
297
- >>> batch["prediction"] = processor.tokenizer._normalize(transcription)
298
- >>> return batch
299
-
300
- >>> result = librispeech_test_clean.map(map_to_pred)
301
-
302
- >>> wer = load("wer")
303
- >>> print(100 * wer.compute(references=result["reference"], predictions=result["prediction"]))
304
- 3.0003583080317572
305
- ```
306
-
307
- ## Long-Form Transcription
308
-
309
- The Whisper model is intrinsically designed to work on audio samples of up to 30s in duration. However, by using a chunking
310
- algorithm, it can be used to transcribe audio samples of up to arbitrary length. This is possible through Transformers
311
- [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
312
- method. Chunking is enabled by setting `chunk_length_s=30` when instantiating the pipeline. With chunking enabled, the pipeline
313
- can be run with batched inference. It can also be extended to predict sequence level timestamps by passing `return_timestamps=True`:
314
-
315
- ```python
316
- >>> import torch
317
- >>> from transformers import pipeline
318
- >>> from datasets import load_dataset
319
-
320
- >>> device = "cuda:0" if torch.cuda.is_available() else "cpu"
321
-
322
- >>> pipe = pipeline(
323
- >>> "automatic-speech-recognition",
324
- >>> model="openai/whisper-large-v2",
325
- >>> chunk_length_s=30,
326
- >>> device=device,
327
- >>> )
328
-
329
- >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
330
- >>> sample = ds[0]["audio"]
331
-
332
- >>> prediction = pipe(sample.copy(), batch_size=8)["text"]
333
- " Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel."
334
-
335
- >>> # we can also return timestamps for the predictions
336
- >>> prediction = pipe(sample.copy(), batch_size=8, return_timestamps=True)["chunks"]
337
- [{'text': ' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.',
338
- 'timestamp': (0.0, 5.44)}]
339
- ```
340
-
341
- Refer to the blog post [ASR Chunking](https://huggingface.co/blog/asr-chunking) for more details on the chunking algorithm.
342
-
343
- ## Fine-Tuning
344
-
345
- The pre-trained Whisper model demonstrates a strong ability to generalise to different datasets and domains. However,
346
- its predictive capabilities can be improved further for certain languages and tasks through *fine-tuning*. The blog
347
- post [Fine-Tune Whisper with 🤗 Transformers](https://huggingface.co/blog/fine-tune-whisper) provides a step-by-step
348
- guide to fine-tuning the Whisper model with as little as 5 hours of labelled data.
349
-
350
- ### Evaluated Use
351
-
352
- The primary intended users of these models are AI researchers studying robustness, generalization, capabilities, biases, and constraints of the current model. However, Whisper is also potentially quite useful as an ASR solution for developers, especially for English speech recognition. We recognize that once models are released, it is impossible to restrict access to only “intended” uses or to draw reasonable guidelines around what is or is not research.
353
-
354
- The models are primarily trained and evaluated on ASR and speech translation to English tasks. They show strong ASR results in ~10 languages. They may exhibit additional capabilities, particularly if fine-tuned on certain tasks like voice activity detection, speaker classification, or speaker diarization but have not been robustly evaluated in these areas. We strongly recommend that users perform robust evaluations of the models in a particular context and domain before deploying them.
355
-
356
- In particular, we caution against using Whisper models to transcribe recordings of individuals taken without their consent or purporting to use these models for any kind of subjective classification. We recommend against use in high-risk domains like decision-making contexts, where flaws in accuracy can lead to pronounced flaws in outcomes. The models are intended to transcribe and translate speech, use of the model for classification is not only not evaluated but also not appropriate, particularly to infer human attributes.
357
-
358
-
359
- ## Training Data
360
-
361
- The models are trained on 680,000 hours of audio and the corresponding transcripts collected from the internet. 65% of this data (or 438,000 hours) represents English-language audio and matched English transcripts, roughly 18% (or 126,000 hours) represents non-English audio and English transcripts, while the final 17% (or 117,000 hours) represents non-English audio and the corresponding transcript. This non-English data represents 98 different languages.
362
-
363
- As discussed in [the accompanying paper](https://cdn.openai.com/papers/whisper.pdf), we see that performance on transcription in a given language is directly correlated with the amount of training data we employ in that language.
364
-
365
-
366
- ## Performance and Limitations
367
-
368
- Our studies show that, over many existing ASR systems, the models exhibit improved robustness to accents, background noise, technical language, as well as zero shot translation from multiple languages into English; and that accuracy on speech recognition and translation is near the state-of-the-art level.
369
-
370
- However, because the models are trained in a weakly supervised manner using large-scale noisy data, the predictions may include texts that are not actually spoken in the audio input (i.e. hallucination). We hypothesize that this happens because, given their general knowledge of language, the models combine trying to predict the next word in audio with trying to transcribe the audio itself.
371
-
372
- Our models perform unevenly across languages, and we observe lower accuracy on low-resource and/or low-discoverability languages or languages where we have less training data. The models also exhibit disparate performance on different accents and dialects of particular languages, which may include higher word error rate across speakers of different genders, races, ages, or other demographic criteria. Our full evaluation results are presented in [the paper accompanying this release](https://cdn.openai.com/papers/whisper.pdf).
373
-
374
- In addition, the sequence-to-sequence architecture of the model makes it prone to generating repetitive texts, which can be mitigated to some degree by beam search and temperature scheduling but not perfectly. Further analysis on these limitations are provided in [the paper](https://cdn.openai.com/papers/whisper.pdf). It is likely that this behavior and hallucinations may be worse on lower-resource and/or lower-discoverability languages.
375
-
376
-
377
- ## Broader Implications
378
-
379
- We anticipate that Whisper models’ transcription capabilities may be used for improving accessibility tools. While Whisper models cannot be used for real-time transcription out of the box – their speed and size suggest that others may be able to build applications on top of them that allow for near-real-time speech recognition and translation. The real value of beneficial applications built on top of Whisper models suggests that the disparate performance of these models may have real economic implications.
380
-
381
- There are also potential dual use concerns that come with releasing Whisper. While we hope the technology will be used primarily for beneficial purposes, making ASR technology more accessible could enable more actors to build capable surveillance technologies or scale up existing surveillance efforts, as the speed and accuracy allow for affordable automatic transcription and translation of large volumes of audio communication. Moreover, these models may have some capabilities to recognize specific individuals out of the box, which in turn presents safety concerns related both to dual use and disparate performance. In practice, we expect that the cost of transcription is not the limiting factor of scaling up surveillance projects.
382
-
383
-
384
- ### BibTeX entry and citation info
385
- ```bibtex
386
- @misc{radford2022whisper,
387
- doi = {10.48550/ARXIV.2212.04356},
388
- url = {https://arxiv.org/abs/2212.04356},
389
- author = {Radford, Alec and Kim, Jong Wook and Xu, Tao and Brockman, Greg and McLeavey, Christine and Sutskever, Ilya},
390
- title = {Robust Speech Recognition via Large-Scale Weak Supervision},
391
- publisher = {arXiv},
392
- year = {2022},
393
- copyright = {arXiv.org perpetual, non-exclusive license}
394
- }
395
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SALMONN_PATHS/whisper-large-v2/added_tokens.json DELETED
@@ -1,1609 +0,0 @@
1
- {
2
- "<|0.00|>": 50364,
3
- "<|0.02|>": 50365,
4
- "<|0.04|>": 50366,
5
- "<|0.06|>": 50367,
6
- "<|0.08|>": 50368,
7
- "<|0.10|>": 50369,
8
- "<|0.12|>": 50370,
9
- "<|0.14|>": 50371,
10
- "<|0.16|>": 50372,
11
- "<|0.18|>": 50373,
12
- "<|0.20|>": 50374,
13
- "<|0.22|>": 50375,
14
- "<|0.24|>": 50376,
15
- "<|0.26|>": 50377,
16
- "<|0.28|>": 50378,
17
- "<|0.30|>": 50379,
18
- "<|0.32|>": 50380,
19
- "<|0.34|>": 50381,
20
- "<|0.36|>": 50382,
21
- "<|0.38|>": 50383,
22
- "<|0.40|>": 50384,
23
- "<|0.42|>": 50385,
24
- "<|0.44|>": 50386,
25
- "<|0.46|>": 50387,
26
- "<|0.48|>": 50388,
27
- "<|0.50|>": 50389,
28
- "<|0.52|>": 50390,
29
- "<|0.54|>": 50391,
30
- "<|0.56|>": 50392,
31
- "<|0.58|>": 50393,
32
- "<|0.60|>": 50394,
33
- "<|0.62|>": 50395,
34
- "<|0.64|>": 50396,
35
- "<|0.66|>": 50397,
36
- "<|0.68|>": 50398,
37
- "<|0.70|>": 50399,
38
- "<|0.72|>": 50400,
39
- "<|0.74|>": 50401,
40
- "<|0.76|>": 50402,
41
- "<|0.78|>": 50403,
42
- "<|0.80|>": 50404,
43
- "<|0.82|>": 50405,
44
- "<|0.84|>": 50406,
45
- "<|0.86|>": 50407,
46
- "<|0.88|>": 50408,
47
- "<|0.90|>": 50409,
48
- "<|0.92|>": 50410,
49
- "<|0.94|>": 50411,
50
- "<|0.96|>": 50412,
51
- "<|0.98|>": 50413,
52
- "<|1.00|>": 50414,
53
- "<|1.02|>": 50415,
54
- "<|1.04|>": 50416,
55
- "<|1.06|>": 50417,
56
- "<|1.08|>": 50418,
57
- "<|1.10|>": 50419,
58
- "<|1.12|>": 50420,
59
- "<|1.14|>": 50421,
60
- "<|1.16|>": 50422,
61
- "<|1.18|>": 50423,
62
- "<|1.20|>": 50424,
63
- "<|1.22|>": 50425,
64
- "<|1.24|>": 50426,
65
- "<|1.26|>": 50427,
66
- "<|1.28|>": 50428,
67
- "<|1.30|>": 50429,
68
- "<|1.32|>": 50430,
69
- "<|1.34|>": 50431,
70
- "<|1.36|>": 50432,
71
- "<|1.38|>": 50433,
72
- "<|1.40|>": 50434,
73
- "<|1.42|>": 50435,
74
- "<|1.44|>": 50436,
75
- "<|1.46|>": 50437,
76
- "<|1.48|>": 50438,
77
- "<|1.50|>": 50439,
78
- "<|1.52|>": 50440,
79
- "<|1.54|>": 50441,
80
- "<|1.56|>": 50442,
81
- "<|1.58|>": 50443,
82
- "<|1.60|>": 50444,
83
- "<|1.62|>": 50445,
84
- "<|1.64|>": 50446,
85
- "<|1.66|>": 50447,
86
- "<|1.68|>": 50448,
87
- "<|1.70|>": 50449,
88
- "<|1.72|>": 50450,
89
- "<|1.74|>": 50451,
90
- "<|1.76|>": 50452,
91
- "<|1.78|>": 50453,
92
- "<|1.80|>": 50454,
93
- "<|1.82|>": 50455,
94
- "<|1.84|>": 50456,
95
- "<|1.86|>": 50457,
96
- "<|1.88|>": 50458,
97
- "<|1.90|>": 50459,
98
- "<|1.92|>": 50460,
99
- "<|1.94|>": 50461,
100
- "<|1.96|>": 50462,
101
- "<|1.98|>": 50463,
102
- "<|10.00|>": 50864,
103
- "<|10.02|>": 50865,
104
- "<|10.04|>": 50866,
105
- "<|10.06|>": 50867,
106
- "<|10.08|>": 50868,
107
- "<|10.10|>": 50869,
108
- "<|10.12|>": 50870,
109
- "<|10.14|>": 50871,
110
- "<|10.16|>": 50872,
111
- "<|10.18|>": 50873,
112
- "<|10.20|>": 50874,
113
- "<|10.22|>": 50875,
114
- "<|10.24|>": 50876,
115
- "<|10.26|>": 50877,
116
- "<|10.28|>": 50878,
117
- "<|10.30|>": 50879,
118
- "<|10.32|>": 50880,
119
- "<|10.34|>": 50881,
120
- "<|10.36|>": 50882,
121
- "<|10.38|>": 50883,
122
- "<|10.40|>": 50884,
123
- "<|10.42|>": 50885,
124
- "<|10.44|>": 50886,
125
- "<|10.46|>": 50887,
126
- "<|10.48|>": 50888,
127
- "<|10.50|>": 50889,
128
- "<|10.52|>": 50890,
129
- "<|10.54|>": 50891,
130
- "<|10.56|>": 50892,
131
- "<|10.58|>": 50893,
132
- "<|10.60|>": 50894,
133
- "<|10.62|>": 50895,
134
- "<|10.64|>": 50896,
135
- "<|10.66|>": 50897,
136
- "<|10.68|>": 50898,
137
- "<|10.70|>": 50899,
138
- "<|10.72|>": 50900,
139
- "<|10.74|>": 50901,
140
- "<|10.76|>": 50902,
141
- "<|10.78|>": 50903,
142
- "<|10.80|>": 50904,
143
- "<|10.82|>": 50905,
144
- "<|10.84|>": 50906,
145
- "<|10.86|>": 50907,
146
- "<|10.88|>": 50908,
147
- "<|10.90|>": 50909,
148
- "<|10.92|>": 50910,
149
- "<|10.94|>": 50911,
150
- "<|10.96|>": 50912,
151
- "<|10.98|>": 50913,
152
- "<|11.00|>": 50914,
153
- "<|11.02|>": 50915,
154
- "<|11.04|>": 50916,
155
- "<|11.06|>": 50917,
156
- "<|11.08|>": 50918,
157
- "<|11.10|>": 50919,
158
- "<|11.12|>": 50920,
159
- "<|11.14|>": 50921,
160
- "<|11.16|>": 50922,
161
- "<|11.18|>": 50923,
162
- "<|11.20|>": 50924,
163
- "<|11.22|>": 50925,
164
- "<|11.24|>": 50926,
165
- "<|11.26|>": 50927,
166
- "<|11.28|>": 50928,
167
- "<|11.30|>": 50929,
168
- "<|11.32|>": 50930,
169
- "<|11.34|>": 50931,
170
- "<|11.36|>": 50932,
171
- "<|11.38|>": 50933,
172
- "<|11.40|>": 50934,
173
- "<|11.42|>": 50935,
174
- "<|11.44|>": 50936,
175
- "<|11.46|>": 50937,
176
- "<|11.48|>": 50938,
177
- "<|11.50|>": 50939,
178
- "<|11.52|>": 50940,
179
- "<|11.54|>": 50941,
180
- "<|11.56|>": 50942,
181
- "<|11.58|>": 50943,
182
- "<|11.60|>": 50944,
183
- "<|11.62|>": 50945,
184
- "<|11.64|>": 50946,
185
- "<|11.66|>": 50947,
186
- "<|11.68|>": 50948,
187
- "<|11.70|>": 50949,
188
- "<|11.72|>": 50950,
189
- "<|11.74|>": 50951,
190
- "<|11.76|>": 50952,
191
- "<|11.78|>": 50953,
192
- "<|11.80|>": 50954,
193
- "<|11.82|>": 50955,
194
- "<|11.84|>": 50956,
195
- "<|11.86|>": 50957,
196
- "<|11.88|>": 50958,
197
- "<|11.90|>": 50959,
198
- "<|11.92|>": 50960,
199
- "<|11.94|>": 50961,
200
- "<|11.96|>": 50962,
201
- "<|11.98|>": 50963,
202
- "<|12.00|>": 50964,
203
- "<|12.02|>": 50965,
204
- "<|12.04|>": 50966,
205
- "<|12.06|>": 50967,
206
- "<|12.08|>": 50968,
207
- "<|12.10|>": 50969,
208
- "<|12.12|>": 50970,
209
- "<|12.14|>": 50971,
210
- "<|12.16|>": 50972,
211
- "<|12.18|>": 50973,
212
- "<|12.20|>": 50974,
213
- "<|12.22|>": 50975,
214
- "<|12.24|>": 50976,
215
- "<|12.26|>": 50977,
216
- "<|12.28|>": 50978,
217
- "<|12.30|>": 50979,
218
- "<|12.32|>": 50980,
219
- "<|12.34|>": 50981,
220
- "<|12.36|>": 50982,
221
- "<|12.38|>": 50983,
222
- "<|12.40|>": 50984,
223
- "<|12.42|>": 50985,
224
- "<|12.44|>": 50986,
225
- "<|12.46|>": 50987,
226
- "<|12.48|>": 50988,
227
- "<|12.50|>": 50989,
228
- "<|12.52|>": 50990,
229
- "<|12.54|>": 50991,
230
- "<|12.56|>": 50992,
231
- "<|12.58|>": 50993,
232
- "<|12.60|>": 50994,
233
- "<|12.62|>": 50995,
234
- "<|12.64|>": 50996,
235
- "<|12.66|>": 50997,
236
- "<|12.68|>": 50998,
237
- "<|12.70|>": 50999,
238
- "<|12.72|>": 51000,
239
- "<|12.74|>": 51001,
240
- "<|12.76|>": 51002,
241
- "<|12.78|>": 51003,
242
- "<|12.80|>": 51004,
243
- "<|12.82|>": 51005,
244
- "<|12.84|>": 51006,
245
- "<|12.86|>": 51007,
246
- "<|12.88|>": 51008,
247
- "<|12.90|>": 51009,
248
- "<|12.92|>": 51010,
249
- "<|12.94|>": 51011,
250
- "<|12.96|>": 51012,
251
- "<|12.98|>": 51013,
252
- "<|13.00|>": 51014,
253
- "<|13.02|>": 51015,
254
- "<|13.04|>": 51016,
255
- "<|13.06|>": 51017,
256
- "<|13.08|>": 51018,
257
- "<|13.10|>": 51019,
258
- "<|13.12|>": 51020,
259
- "<|13.14|>": 51021,
260
- "<|13.16|>": 51022,
261
- "<|13.18|>": 51023,
262
- "<|13.20|>": 51024,
263
- "<|13.22|>": 51025,
264
- "<|13.24|>": 51026,
265
- "<|13.26|>": 51027,
266
- "<|13.28|>": 51028,
267
- "<|13.30|>": 51029,
268
- "<|13.32|>": 51030,
269
- "<|13.34|>": 51031,
270
- "<|13.36|>": 51032,
271
- "<|13.38|>": 51033,
272
- "<|13.40|>": 51034,
273
- "<|13.42|>": 51035,
274
- "<|13.44|>": 51036,
275
- "<|13.46|>": 51037,
276
- "<|13.48|>": 51038,
277
- "<|13.50|>": 51039,
278
- "<|13.52|>": 51040,
279
- "<|13.54|>": 51041,
280
- "<|13.56|>": 51042,
281
- "<|13.58|>": 51043,
282
- "<|13.60|>": 51044,
283
- "<|13.62|>": 51045,
284
- "<|13.64|>": 51046,
285
- "<|13.66|>": 51047,
286
- "<|13.68|>": 51048,
287
- "<|13.70|>": 51049,
288
- "<|13.72|>": 51050,
289
- "<|13.74|>": 51051,
290
- "<|13.76|>": 51052,
291
- "<|13.78|>": 51053,
292
- "<|13.80|>": 51054,
293
- "<|13.82|>": 51055,
294
- "<|13.84|>": 51056,
295
- "<|13.86|>": 51057,
296
- "<|13.88|>": 51058,
297
- "<|13.90|>": 51059,
298
- "<|13.92|>": 51060,
299
- "<|13.94|>": 51061,
300
- "<|13.96|>": 51062,
301
- "<|13.98|>": 51063,
302
- "<|14.00|>": 51064,
303
- "<|14.02|>": 51065,
304
- "<|14.04|>": 51066,
305
- "<|14.06|>": 51067,
306
- "<|14.08|>": 51068,
307
- "<|14.10|>": 51069,
308
- "<|14.12|>": 51070,
309
- "<|14.14|>": 51071,
310
- "<|14.16|>": 51072,
311
- "<|14.18|>": 51073,
312
- "<|14.20|>": 51074,
313
- "<|14.22|>": 51075,
314
- "<|14.24|>": 51076,
315
- "<|14.26|>": 51077,
316
- "<|14.28|>": 51078,
317
- "<|14.30|>": 51079,
318
- "<|14.32|>": 51080,
319
- "<|14.34|>": 51081,
320
- "<|14.36|>": 51082,
321
- "<|14.38|>": 51083,
322
- "<|14.40|>": 51084,
323
- "<|14.42|>": 51085,
324
- "<|14.44|>": 51086,
325
- "<|14.46|>": 51087,
326
- "<|14.48|>": 51088,
327
- "<|14.50|>": 51089,
328
- "<|14.52|>": 51090,
329
- "<|14.54|>": 51091,
330
- "<|14.56|>": 51092,
331
- "<|14.58|>": 51093,
332
- "<|14.60|>": 51094,
333
- "<|14.62|>": 51095,
334
- "<|14.64|>": 51096,
335
- "<|14.66|>": 51097,
336
- "<|14.68|>": 51098,
337
- "<|14.70|>": 51099,
338
- "<|14.72|>": 51100,
339
- "<|14.74|>": 51101,
340
- "<|14.76|>": 51102,
341
- "<|14.78|>": 51103,
342
- "<|14.80|>": 51104,
343
- "<|14.82|>": 51105,
344
- "<|14.84|>": 51106,
345
- "<|14.86|>": 51107,
346
- "<|14.88|>": 51108,
347
- "<|14.90|>": 51109,
348
- "<|14.92|>": 51110,
349
- "<|14.94|>": 51111,
350
- "<|14.96|>": 51112,
351
- "<|14.98|>": 51113,
352
- "<|15.00|>": 51114,
353
- "<|15.02|>": 51115,
354
- "<|15.04|>": 51116,
355
- "<|15.06|>": 51117,
356
- "<|15.08|>": 51118,
357
- "<|15.10|>": 51119,
358
- "<|15.12|>": 51120,
359
- "<|15.14|>": 51121,
360
- "<|15.16|>": 51122,
361
- "<|15.18|>": 51123,
362
- "<|15.20|>": 51124,
363
- "<|15.22|>": 51125,
364
- "<|15.24|>": 51126,
365
- "<|15.26|>": 51127,
366
- "<|15.28|>": 51128,
367
- "<|15.30|>": 51129,
368
- "<|15.32|>": 51130,
369
- "<|15.34|>": 51131,
370
- "<|15.36|>": 51132,
371
- "<|15.38|>": 51133,
372
- "<|15.40|>": 51134,
373
- "<|15.42|>": 51135,
374
- "<|15.44|>": 51136,
375
- "<|15.46|>": 51137,
376
- "<|15.48|>": 51138,
377
- "<|15.50|>": 51139,
378
- "<|15.52|>": 51140,
379
- "<|15.54|>": 51141,
380
- "<|15.56|>": 51142,
381
- "<|15.58|>": 51143,
382
- "<|15.60|>": 51144,
383
- "<|15.62|>": 51145,
384
- "<|15.64|>": 51146,
385
- "<|15.66|>": 51147,
386
- "<|15.68|>": 51148,
387
- "<|15.70|>": 51149,
388
- "<|15.72|>": 51150,
389
- "<|15.74|>": 51151,
390
- "<|15.76|>": 51152,
391
- "<|15.78|>": 51153,
392
- "<|15.80|>": 51154,
393
- "<|15.82|>": 51155,
394
- "<|15.84|>": 51156,
395
- "<|15.86|>": 51157,
396
- "<|15.88|>": 51158,
397
- "<|15.90|>": 51159,
398
- "<|15.92|>": 51160,
399
- "<|15.94|>": 51161,
400
- "<|15.96|>": 51162,
401
- "<|15.98|>": 51163,
402
- "<|16.00|>": 51164,
403
- "<|16.02|>": 51165,
404
- "<|16.04|>": 51166,
405
- "<|16.06|>": 51167,
406
- "<|16.08|>": 51168,
407
- "<|16.10|>": 51169,
408
- "<|16.12|>": 51170,
409
- "<|16.14|>": 51171,
410
- "<|16.16|>": 51172,
411
- "<|16.18|>": 51173,
412
- "<|16.20|>": 51174,
413
- "<|16.22|>": 51175,
414
- "<|16.24|>": 51176,
415
- "<|16.26|>": 51177,
416
- "<|16.28|>": 51178,
417
- "<|16.30|>": 51179,
418
- "<|16.32|>": 51180,
419
- "<|16.34|>": 51181,
420
- "<|16.36|>": 51182,
421
- "<|16.38|>": 51183,
422
- "<|16.40|>": 51184,
423
- "<|16.42|>": 51185,
424
- "<|16.44|>": 51186,
425
- "<|16.46|>": 51187,
426
- "<|16.48|>": 51188,
427
- "<|16.50|>": 51189,
428
- "<|16.52|>": 51190,
429
- "<|16.54|>": 51191,
430
- "<|16.56|>": 51192,
431
- "<|16.58|>": 51193,
432
- "<|16.60|>": 51194,
433
- "<|16.62|>": 51195,
434
- "<|16.64|>": 51196,
435
- "<|16.66|>": 51197,
436
- "<|16.68|>": 51198,
437
- "<|16.70|>": 51199,
438
- "<|16.72|>": 51200,
439
- "<|16.74|>": 51201,
440
- "<|16.76|>": 51202,
441
- "<|16.78|>": 51203,
442
- "<|16.80|>": 51204,
443
- "<|16.82|>": 51205,
444
- "<|16.84|>": 51206,
445
- "<|16.86|>": 51207,
446
- "<|16.88|>": 51208,
447
- "<|16.90|>": 51209,
448
- "<|16.92|>": 51210,
449
- "<|16.94|>": 51211,
450
- "<|16.96|>": 51212,
451
- "<|16.98|>": 51213,
452
- "<|17.00|>": 51214,
453
- "<|17.02|>": 51215,
454
- "<|17.04|>": 51216,
455
- "<|17.06|>": 51217,
456
- "<|17.08|>": 51218,
457
- "<|17.10|>": 51219,
458
- "<|17.12|>": 51220,
459
- "<|17.14|>": 51221,
460
- "<|17.16|>": 51222,
461
- "<|17.18|>": 51223,
462
- "<|17.20|>": 51224,
463
- "<|17.22|>": 51225,
464
- "<|17.24|>": 51226,
465
- "<|17.26|>": 51227,
466
- "<|17.28|>": 51228,
467
- "<|17.30|>": 51229,
468
- "<|17.32|>": 51230,
469
- "<|17.34|>": 51231,
470
- "<|17.36|>": 51232,
471
- "<|17.38|>": 51233,
472
- "<|17.40|>": 51234,
473
- "<|17.42|>": 51235,
474
- "<|17.44|>": 51236,
475
- "<|17.46|>": 51237,
476
- "<|17.48|>": 51238,
477
- "<|17.50|>": 51239,
478
- "<|17.52|>": 51240,
479
- "<|17.54|>": 51241,
480
- "<|17.56|>": 51242,
481
- "<|17.58|>": 51243,
482
- "<|17.60|>": 51244,
483
- "<|17.62|>": 51245,
484
- "<|17.64|>": 51246,
485
- "<|17.66|>": 51247,
486
- "<|17.68|>": 51248,
487
- "<|17.70|>": 51249,
488
- "<|17.72|>": 51250,
489
- "<|17.74|>": 51251,
490
- "<|17.76|>": 51252,
491
- "<|17.78|>": 51253,
492
- "<|17.80|>": 51254,
493
- "<|17.82|>": 51255,
494
- "<|17.84|>": 51256,
495
- "<|17.86|>": 51257,
496
- "<|17.88|>": 51258,
497
- "<|17.90|>": 51259,
498
- "<|17.92|>": 51260,
499
- "<|17.94|>": 51261,
500
- "<|17.96|>": 51262,
501
- "<|17.98|>": 51263,
502
- "<|18.00|>": 51264,
503
- "<|18.02|>": 51265,
504
- "<|18.04|>": 51266,
505
- "<|18.06|>": 51267,
506
- "<|18.08|>": 51268,
507
- "<|18.10|>": 51269,
508
- "<|18.12|>": 51270,
509
- "<|18.14|>": 51271,
510
- "<|18.16|>": 51272,
511
- "<|18.18|>": 51273,
512
- "<|18.20|>": 51274,
513
- "<|18.22|>": 51275,
514
- "<|18.24|>": 51276,
515
- "<|18.26|>": 51277,
516
- "<|18.28|>": 51278,
517
- "<|18.30|>": 51279,
518
- "<|18.32|>": 51280,
519
- "<|18.34|>": 51281,
520
- "<|18.36|>": 51282,
521
- "<|18.38|>": 51283,
522
- "<|18.40|>": 51284,
523
- "<|18.42|>": 51285,
524
- "<|18.44|>": 51286,
525
- "<|18.46|>": 51287,
526
- "<|18.48|>": 51288,
527
- "<|18.50|>": 51289,
528
- "<|18.52|>": 51290,
529
- "<|18.54|>": 51291,
530
- "<|18.56|>": 51292,
531
- "<|18.58|>": 51293,
532
- "<|18.60|>": 51294,
533
- "<|18.62|>": 51295,
534
- "<|18.64|>": 51296,
535
- "<|18.66|>": 51297,
536
- "<|18.68|>": 51298,
537
- "<|18.70|>": 51299,
538
- "<|18.72|>": 51300,
539
- "<|18.74|>": 51301,
540
- "<|18.76|>": 51302,
541
- "<|18.78|>": 51303,
542
- "<|18.80|>": 51304,
543
- "<|18.82|>": 51305,
544
- "<|18.84|>": 51306,
545
- "<|18.86|>": 51307,
546
- "<|18.88|>": 51308,
547
- "<|18.90|>": 51309,
548
- "<|18.92|>": 51310,
549
- "<|18.94|>": 51311,
550
- "<|18.96|>": 51312,
551
- "<|18.98|>": 51313,
552
- "<|19.00|>": 51314,
553
- "<|19.02|>": 51315,
554
- "<|19.04|>": 51316,
555
- "<|19.06|>": 51317,
556
- "<|19.08|>": 51318,
557
- "<|19.10|>": 51319,
558
- "<|19.12|>": 51320,
559
- "<|19.14|>": 51321,
560
- "<|19.16|>": 51322,
561
- "<|19.18|>": 51323,
562
- "<|19.20|>": 51324,
563
- "<|19.22|>": 51325,
564
- "<|19.24|>": 51326,
565
- "<|19.26|>": 51327,
566
- "<|19.28|>": 51328,
567
- "<|19.30|>": 51329,
568
- "<|19.32|>": 51330,
569
- "<|19.34|>": 51331,
570
- "<|19.36|>": 51332,
571
- "<|19.38|>": 51333,
572
- "<|19.40|>": 51334,
573
- "<|19.42|>": 51335,
574
- "<|19.44|>": 51336,
575
- "<|19.46|>": 51337,
576
- "<|19.48|>": 51338,
577
- "<|19.50|>": 51339,
578
- "<|19.52|>": 51340,
579
- "<|19.54|>": 51341,
580
- "<|19.56|>": 51342,
581
- "<|19.58|>": 51343,
582
- "<|19.60|>": 51344,
583
- "<|19.62|>": 51345,
584
- "<|19.64|>": 51346,
585
- "<|19.66|>": 51347,
586
- "<|19.68|>": 51348,
587
- "<|19.70|>": 51349,
588
- "<|19.72|>": 51350,
589
- "<|19.74|>": 51351,
590
- "<|19.76|>": 51352,
591
- "<|19.78|>": 51353,
592
- "<|19.80|>": 51354,
593
- "<|19.82|>": 51355,
594
- "<|19.84|>": 51356,
595
- "<|19.86|>": 51357,
596
- "<|19.88|>": 51358,
597
- "<|19.90|>": 51359,
598
- "<|19.92|>": 51360,
599
- "<|19.94|>": 51361,
600
- "<|19.96|>": 51362,
601
- "<|19.98|>": 51363,
602
- "<|2.00|>": 50464,
603
- "<|2.02|>": 50465,
604
- "<|2.04|>": 50466,
605
- "<|2.06|>": 50467,
606
- "<|2.08|>": 50468,
607
- "<|2.10|>": 50469,
608
- "<|2.12|>": 50470,
609
- "<|2.14|>": 50471,
610
- "<|2.16|>": 50472,
611
- "<|2.18|>": 50473,
612
- "<|2.20|>": 50474,
613
- "<|2.22|>": 50475,
614
- "<|2.24|>": 50476,
615
- "<|2.26|>": 50477,
616
- "<|2.28|>": 50478,
617
- "<|2.30|>": 50479,
618
- "<|2.32|>": 50480,
619
- "<|2.34|>": 50481,
620
- "<|2.36|>": 50482,
621
- "<|2.38|>": 50483,
622
- "<|2.40|>": 50484,
623
- "<|2.42|>": 50485,
624
- "<|2.44|>": 50486,
625
- "<|2.46|>": 50487,
626
- "<|2.48|>": 50488,
627
- "<|2.50|>": 50489,
628
- "<|2.52|>": 50490,
629
- "<|2.54|>": 50491,
630
- "<|2.56|>": 50492,
631
- "<|2.58|>": 50493,
632
- "<|2.60|>": 50494,
633
- "<|2.62|>": 50495,
634
- "<|2.64|>": 50496,
635
- "<|2.66|>": 50497,
636
- "<|2.68|>": 50498,
637
- "<|2.70|>": 50499,
638
- "<|2.72|>": 50500,
639
- "<|2.74|>": 50501,
640
- "<|2.76|>": 50502,
641
- "<|2.78|>": 50503,
642
- "<|2.80|>": 50504,
643
- "<|2.82|>": 50505,
644
- "<|2.84|>": 50506,
645
- "<|2.86|>": 50507,
646
- "<|2.88|>": 50508,
647
- "<|2.90|>": 50509,
648
- "<|2.92|>": 50510,
649
- "<|2.94|>": 50511,
650
- "<|2.96|>": 50512,
651
- "<|2.98|>": 50513,
652
- "<|20.00|>": 51364,
653
- "<|20.02|>": 51365,
654
- "<|20.04|>": 51366,
655
- "<|20.06|>": 51367,
656
- "<|20.08|>": 51368,
657
- "<|20.10|>": 51369,
658
- "<|20.12|>": 51370,
659
- "<|20.14|>": 51371,
660
- "<|20.16|>": 51372,
661
- "<|20.18|>": 51373,
662
- "<|20.20|>": 51374,
663
- "<|20.22|>": 51375,
664
- "<|20.24|>": 51376,
665
- "<|20.26|>": 51377,
666
- "<|20.28|>": 51378,
667
- "<|20.30|>": 51379,
668
- "<|20.32|>": 51380,
669
- "<|20.34|>": 51381,
670
- "<|20.36|>": 51382,
671
- "<|20.38|>": 51383,
672
- "<|20.40|>": 51384,
673
- "<|20.42|>": 51385,
674
- "<|20.44|>": 51386,
675
- "<|20.46|>": 51387,
676
- "<|20.48|>": 51388,
677
- "<|20.50|>": 51389,
678
- "<|20.52|>": 51390,
679
- "<|20.54|>": 51391,
680
- "<|20.56|>": 51392,
681
- "<|20.58|>": 51393,
682
- "<|20.60|>": 51394,
683
- "<|20.62|>": 51395,
684
- "<|20.64|>": 51396,
685
- "<|20.66|>": 51397,
686
- "<|20.68|>": 51398,
687
- "<|20.70|>": 51399,
688
- "<|20.72|>": 51400,
689
- "<|20.74|>": 51401,
690
- "<|20.76|>": 51402,
691
- "<|20.78|>": 51403,
692
- "<|20.80|>": 51404,
693
- "<|20.82|>": 51405,
694
- "<|20.84|>": 51406,
695
- "<|20.86|>": 51407,
696
- "<|20.88|>": 51408,
697
- "<|20.90|>": 51409,
698
- "<|20.92|>": 51410,
699
- "<|20.94|>": 51411,
700
- "<|20.96|>": 51412,
701
- "<|20.98|>": 51413,
702
- "<|21.00|>": 51414,
703
- "<|21.02|>": 51415,
704
- "<|21.04|>": 51416,
705
- "<|21.06|>": 51417,
706
- "<|21.08|>": 51418,
707
- "<|21.10|>": 51419,
708
- "<|21.12|>": 51420,
709
- "<|21.14|>": 51421,
710
- "<|21.16|>": 51422,
711
- "<|21.18|>": 51423,
712
- "<|21.20|>": 51424,
713
- "<|21.22|>": 51425,
714
- "<|21.24|>": 51426,
715
- "<|21.26|>": 51427,
716
- "<|21.28|>": 51428,
717
- "<|21.30|>": 51429,
718
- "<|21.32|>": 51430,
719
- "<|21.34|>": 51431,
720
- "<|21.36|>": 51432,
721
- "<|21.38|>": 51433,
722
- "<|21.40|>": 51434,
723
- "<|21.42|>": 51435,
724
- "<|21.44|>": 51436,
725
- "<|21.46|>": 51437,
726
- "<|21.48|>": 51438,
727
- "<|21.50|>": 51439,
728
- "<|21.52|>": 51440,
729
- "<|21.54|>": 51441,
730
- "<|21.56|>": 51442,
731
- "<|21.58|>": 51443,
732
- "<|21.60|>": 51444,
733
- "<|21.62|>": 51445,
734
- "<|21.64|>": 51446,
735
- "<|21.66|>": 51447,
736
- "<|21.68|>": 51448,
737
- "<|21.70|>": 51449,
738
- "<|21.72|>": 51450,
739
- "<|21.74|>": 51451,
740
- "<|21.76|>": 51452,
741
- "<|21.78|>": 51453,
742
- "<|21.80|>": 51454,
743
- "<|21.82|>": 51455,
744
- "<|21.84|>": 51456,
745
- "<|21.86|>": 51457,
746
- "<|21.88|>": 51458,
747
- "<|21.90|>": 51459,
748
- "<|21.92|>": 51460,
749
- "<|21.94|>": 51461,
750
- "<|21.96|>": 51462,
751
- "<|21.98|>": 51463,
752
- "<|22.00|>": 51464,
753
- "<|22.02|>": 51465,
754
- "<|22.04|>": 51466,
755
- "<|22.06|>": 51467,
756
- "<|22.08|>": 51468,
757
- "<|22.10|>": 51469,
758
- "<|22.12|>": 51470,
759
- "<|22.14|>": 51471,
760
- "<|22.16|>": 51472,
761
- "<|22.18|>": 51473,
762
- "<|22.20|>": 51474,
763
- "<|22.22|>": 51475,
764
- "<|22.24|>": 51476,
765
- "<|22.26|>": 51477,
766
- "<|22.28|>": 51478,
767
- "<|22.30|>": 51479,
768
- "<|22.32|>": 51480,
769
- "<|22.34|>": 51481,
770
- "<|22.36|>": 51482,
771
- "<|22.38|>": 51483,
772
- "<|22.40|>": 51484,
773
- "<|22.42|>": 51485,
774
- "<|22.44|>": 51486,
775
- "<|22.46|>": 51487,
776
- "<|22.48|>": 51488,
777
- "<|22.50|>": 51489,
778
- "<|22.52|>": 51490,
779
- "<|22.54|>": 51491,
780
- "<|22.56|>": 51492,
781
- "<|22.58|>": 51493,
782
- "<|22.60|>": 51494,
783
- "<|22.62|>": 51495,
784
- "<|22.64|>": 51496,
785
- "<|22.66|>": 51497,
786
- "<|22.68|>": 51498,
787
- "<|22.70|>": 51499,
788
- "<|22.72|>": 51500,
789
- "<|22.74|>": 51501,
790
- "<|22.76|>": 51502,
791
- "<|22.78|>": 51503,
792
- "<|22.80|>": 51504,
793
- "<|22.82|>": 51505,
794
- "<|22.84|>": 51506,
795
- "<|22.86|>": 51507,
796
- "<|22.88|>": 51508,
797
- "<|22.90|>": 51509,
798
- "<|22.92|>": 51510,
799
- "<|22.94|>": 51511,
800
- "<|22.96|>": 51512,
801
- "<|22.98|>": 51513,
802
- "<|23.00|>": 51514,
803
- "<|23.02|>": 51515,
804
- "<|23.04|>": 51516,
805
- "<|23.06|>": 51517,
806
- "<|23.08|>": 51518,
807
- "<|23.10|>": 51519,
808
- "<|23.12|>": 51520,
809
- "<|23.14|>": 51521,
810
- "<|23.16|>": 51522,
811
- "<|23.18|>": 51523,
812
- "<|23.20|>": 51524,
813
- "<|23.22|>": 51525,
814
- "<|23.24|>": 51526,
815
- "<|23.26|>": 51527,
816
- "<|23.28|>": 51528,
817
- "<|23.30|>": 51529,
818
- "<|23.32|>": 51530,
819
- "<|23.34|>": 51531,
820
- "<|23.36|>": 51532,
821
- "<|23.38|>": 51533,
822
- "<|23.40|>": 51534,
823
- "<|23.42|>": 51535,
824
- "<|23.44|>": 51536,
825
- "<|23.46|>": 51537,
826
- "<|23.48|>": 51538,
827
- "<|23.50|>": 51539,
828
- "<|23.52|>": 51540,
829
- "<|23.54|>": 51541,
830
- "<|23.56|>": 51542,
831
- "<|23.58|>": 51543,
832
- "<|23.60|>": 51544,
833
- "<|23.62|>": 51545,
834
- "<|23.64|>": 51546,
835
- "<|23.66|>": 51547,
836
- "<|23.68|>": 51548,
837
- "<|23.70|>": 51549,
838
- "<|23.72|>": 51550,
839
- "<|23.74|>": 51551,
840
- "<|23.76|>": 51552,
841
- "<|23.78|>": 51553,
842
- "<|23.80|>": 51554,
843
- "<|23.82|>": 51555,
844
- "<|23.84|>": 51556,
845
- "<|23.86|>": 51557,
846
- "<|23.88|>": 51558,
847
- "<|23.90|>": 51559,
848
- "<|23.92|>": 51560,
849
- "<|23.94|>": 51561,
850
- "<|23.96|>": 51562,
851
- "<|23.98|>": 51563,
852
- "<|24.00|>": 51564,
853
- "<|24.02|>": 51565,
854
- "<|24.04|>": 51566,
855
- "<|24.06|>": 51567,
856
- "<|24.08|>": 51568,
857
- "<|24.10|>": 51569,
858
- "<|24.12|>": 51570,
859
- "<|24.14|>": 51571,
860
- "<|24.16|>": 51572,
861
- "<|24.18|>": 51573,
862
- "<|24.20|>": 51574,
863
- "<|24.22|>": 51575,
864
- "<|24.24|>": 51576,
865
- "<|24.26|>": 51577,
866
- "<|24.28|>": 51578,
867
- "<|24.30|>": 51579,
868
- "<|24.32|>": 51580,
869
- "<|24.34|>": 51581,
870
- "<|24.36|>": 51582,
871
- "<|24.38|>": 51583,
872
- "<|24.40|>": 51584,
873
- "<|24.42|>": 51585,
874
- "<|24.44|>": 51586,
875
- "<|24.46|>": 51587,
876
- "<|24.48|>": 51588,
877
- "<|24.50|>": 51589,
878
- "<|24.52|>": 51590,
879
- "<|24.54|>": 51591,
880
- "<|24.56|>": 51592,
881
- "<|24.58|>": 51593,
882
- "<|24.60|>": 51594,
883
- "<|24.62|>": 51595,
884
- "<|24.64|>": 51596,
885
- "<|24.66|>": 51597,
886
- "<|24.68|>": 51598,
887
- "<|24.70|>": 51599,
888
- "<|24.72|>": 51600,
889
- "<|24.74|>": 51601,
890
- "<|24.76|>": 51602,
891
- "<|24.78|>": 51603,
892
- "<|24.80|>": 51604,
893
- "<|24.82|>": 51605,
894
- "<|24.84|>": 51606,
895
- "<|24.86|>": 51607,
896
- "<|24.88|>": 51608,
897
- "<|24.90|>": 51609,
898
- "<|24.92|>": 51610,
899
- "<|24.94|>": 51611,
900
- "<|24.96|>": 51612,
901
- "<|24.98|>": 51613,
902
- "<|25.00|>": 51614,
903
- "<|25.02|>": 51615,
904
- "<|25.04|>": 51616,
905
- "<|25.06|>": 51617,
906
- "<|25.08|>": 51618,
907
- "<|25.10|>": 51619,
908
- "<|25.12|>": 51620,
909
- "<|25.14|>": 51621,
910
- "<|25.16|>": 51622,
911
- "<|25.18|>": 51623,
912
- "<|25.20|>": 51624,
913
- "<|25.22|>": 51625,
914
- "<|25.24|>": 51626,
915
- "<|25.26|>": 51627,
916
- "<|25.28|>": 51628,
917
- "<|25.30|>": 51629,
918
- "<|25.32|>": 51630,
919
- "<|25.34|>": 51631,
920
- "<|25.36|>": 51632,
921
- "<|25.38|>": 51633,
922
- "<|25.40|>": 51634,
923
- "<|25.42|>": 51635,
924
- "<|25.44|>": 51636,
925
- "<|25.46|>": 51637,
926
- "<|25.48|>": 51638,
927
- "<|25.50|>": 51639,
928
- "<|25.52|>": 51640,
929
- "<|25.54|>": 51641,
930
- "<|25.56|>": 51642,
931
- "<|25.58|>": 51643,
932
- "<|25.60|>": 51644,
933
- "<|25.62|>": 51645,
934
- "<|25.64|>": 51646,
935
- "<|25.66|>": 51647,
936
- "<|25.68|>": 51648,
937
- "<|25.70|>": 51649,
938
- "<|25.72|>": 51650,
939
- "<|25.74|>": 51651,
940
- "<|25.76|>": 51652,
941
- "<|25.78|>": 51653,
942
- "<|25.80|>": 51654,
943
- "<|25.82|>": 51655,
944
- "<|25.84|>": 51656,
945
- "<|25.86|>": 51657,
946
- "<|25.88|>": 51658,
947
- "<|25.90|>": 51659,
948
- "<|25.92|>": 51660,
949
- "<|25.94|>": 51661,
950
- "<|25.96|>": 51662,
951
- "<|25.98|>": 51663,
952
- "<|26.00|>": 51664,
953
- "<|26.02|>": 51665,
954
- "<|26.04|>": 51666,
955
- "<|26.06|>": 51667,
956
- "<|26.08|>": 51668,
957
- "<|26.10|>": 51669,
958
- "<|26.12|>": 51670,
959
- "<|26.14|>": 51671,
960
- "<|26.16|>": 51672,
961
- "<|26.18|>": 51673,
962
- "<|26.20|>": 51674,
963
- "<|26.22|>": 51675,
964
- "<|26.24|>": 51676,
965
- "<|26.26|>": 51677,
966
- "<|26.28|>": 51678,
967
- "<|26.30|>": 51679,
968
- "<|26.32|>": 51680,
969
- "<|26.34|>": 51681,
970
- "<|26.36|>": 51682,
971
- "<|26.38|>": 51683,
972
- "<|26.40|>": 51684,
973
- "<|26.42|>": 51685,
974
- "<|26.44|>": 51686,
975
- "<|26.46|>": 51687,
976
- "<|26.48|>": 51688,
977
- "<|26.50|>": 51689,
978
- "<|26.52|>": 51690,
979
- "<|26.54|>": 51691,
980
- "<|26.56|>": 51692,
981
- "<|26.58|>": 51693,
982
- "<|26.60|>": 51694,
983
- "<|26.62|>": 51695,
984
- "<|26.64|>": 51696,
985
- "<|26.66|>": 51697,
986
- "<|26.68|>": 51698,
987
- "<|26.70|>": 51699,
988
- "<|26.72|>": 51700,
989
- "<|26.74|>": 51701,
990
- "<|26.76|>": 51702,
991
- "<|26.78|>": 51703,
992
- "<|26.80|>": 51704,
993
- "<|26.82|>": 51705,
994
- "<|26.84|>": 51706,
995
- "<|26.86|>": 51707,
996
- "<|26.88|>": 51708,
997
- "<|26.90|>": 51709,
998
- "<|26.92|>": 51710,
999
- "<|26.94|>": 51711,
1000
- "<|26.96|>": 51712,
1001
- "<|26.98|>": 51713,
1002
- "<|27.00|>": 51714,
1003
- "<|27.02|>": 51715,
1004
- "<|27.04|>": 51716,
1005
- "<|27.06|>": 51717,
1006
- "<|27.08|>": 51718,
1007
- "<|27.10|>": 51719,
1008
- "<|27.12|>": 51720,
1009
- "<|27.14|>": 51721,
1010
- "<|27.16|>": 51722,
1011
- "<|27.18|>": 51723,
1012
- "<|27.20|>": 51724,
1013
- "<|27.22|>": 51725,
1014
- "<|27.24|>": 51726,
1015
- "<|27.26|>": 51727,
1016
- "<|27.28|>": 51728,
1017
- "<|27.30|>": 51729,
1018
- "<|27.32|>": 51730,
1019
- "<|27.34|>": 51731,
1020
- "<|27.36|>": 51732,
1021
- "<|27.38|>": 51733,
1022
- "<|27.40|>": 51734,
1023
- "<|27.42|>": 51735,
1024
- "<|27.44|>": 51736,
1025
- "<|27.46|>": 51737,
1026
- "<|27.48|>": 51738,
1027
- "<|27.50|>": 51739,
1028
- "<|27.52|>": 51740,
1029
- "<|27.54|>": 51741,
1030
- "<|27.56|>": 51742,
1031
- "<|27.58|>": 51743,
1032
- "<|27.60|>": 51744,
1033
- "<|27.62|>": 51745,
1034
- "<|27.64|>": 51746,
1035
- "<|27.66|>": 51747,
1036
- "<|27.68|>": 51748,
1037
- "<|27.70|>": 51749,
1038
- "<|27.72|>": 51750,
1039
- "<|27.74|>": 51751,
1040
- "<|27.76|>": 51752,
1041
- "<|27.78|>": 51753,
1042
- "<|27.80|>": 51754,
1043
- "<|27.82|>": 51755,
1044
- "<|27.84|>": 51756,
1045
- "<|27.86|>": 51757,
1046
- "<|27.88|>": 51758,
1047
- "<|27.90|>": 51759,
1048
- "<|27.92|>": 51760,
1049
- "<|27.94|>": 51761,
1050
- "<|27.96|>": 51762,
1051
- "<|27.98|>": 51763,
1052
- "<|28.00|>": 51764,
1053
- "<|28.02|>": 51765,
1054
- "<|28.04|>": 51766,
1055
- "<|28.06|>": 51767,
1056
- "<|28.08|>": 51768,
1057
- "<|28.10|>": 51769,
1058
- "<|28.12|>": 51770,
1059
- "<|28.14|>": 51771,
1060
- "<|28.16|>": 51772,
1061
- "<|28.18|>": 51773,
1062
- "<|28.20|>": 51774,
1063
- "<|28.22|>": 51775,
1064
- "<|28.24|>": 51776,
1065
- "<|28.26|>": 51777,
1066
- "<|28.28|>": 51778,
1067
- "<|28.30|>": 51779,
1068
- "<|28.32|>": 51780,
1069
- "<|28.34|>": 51781,
1070
- "<|28.36|>": 51782,
1071
- "<|28.38|>": 51783,
1072
- "<|28.40|>": 51784,
1073
- "<|28.42|>": 51785,
1074
- "<|28.44|>": 51786,
1075
- "<|28.46|>": 51787,
1076
- "<|28.48|>": 51788,
1077
- "<|28.50|>": 51789,
1078
- "<|28.52|>": 51790,
1079
- "<|28.54|>": 51791,
1080
- "<|28.56|>": 51792,
1081
- "<|28.58|>": 51793,
1082
- "<|28.60|>": 51794,
1083
- "<|28.62|>": 51795,
1084
- "<|28.64|>": 51796,
1085
- "<|28.66|>": 51797,
1086
- "<|28.68|>": 51798,
1087
- "<|28.70|>": 51799,
1088
- "<|28.72|>": 51800,
1089
- "<|28.74|>": 51801,
1090
- "<|28.76|>": 51802,
1091
- "<|28.78|>": 51803,
1092
- "<|28.80|>": 51804,
1093
- "<|28.82|>": 51805,
1094
- "<|28.84|>": 51806,
1095
- "<|28.86|>": 51807,
1096
- "<|28.88|>": 51808,
1097
- "<|28.90|>": 51809,
1098
- "<|28.92|>": 51810,
1099
- "<|28.94|>": 51811,
1100
- "<|28.96|>": 51812,
1101
- "<|28.98|>": 51813,
1102
- "<|29.00|>": 51814,
1103
- "<|29.02|>": 51815,
1104
- "<|29.04|>": 51816,
1105
- "<|29.06|>": 51817,
1106
- "<|29.08|>": 51818,
1107
- "<|29.10|>": 51819,
1108
- "<|29.12|>": 51820,
1109
- "<|29.14|>": 51821,
1110
- "<|29.16|>": 51822,
1111
- "<|29.18|>": 51823,
1112
- "<|29.20|>": 51824,
1113
- "<|29.22|>": 51825,
1114
- "<|29.24|>": 51826,
1115
- "<|29.26|>": 51827,
1116
- "<|29.28|>": 51828,
1117
- "<|29.30|>": 51829,
1118
- "<|29.32|>": 51830,
1119
- "<|29.34|>": 51831,
1120
- "<|29.36|>": 51832,
1121
- "<|29.38|>": 51833,
1122
- "<|29.40|>": 51834,
1123
- "<|29.42|>": 51835,
1124
- "<|29.44|>": 51836,
1125
- "<|29.46|>": 51837,
1126
- "<|29.48|>": 51838,
1127
- "<|29.50|>": 51839,
1128
- "<|29.52|>": 51840,
1129
- "<|29.54|>": 51841,
1130
- "<|29.56|>": 51842,
1131
- "<|29.58|>": 51843,
1132
- "<|29.60|>": 51844,
1133
- "<|29.62|>": 51845,
1134
- "<|29.64|>": 51846,
1135
- "<|29.66|>": 51847,
1136
- "<|29.68|>": 51848,
1137
- "<|29.70|>": 51849,
1138
- "<|29.72|>": 51850,
1139
- "<|29.74|>": 51851,
1140
- "<|29.76|>": 51852,
1141
- "<|29.78|>": 51853,
1142
- "<|29.80|>": 51854,
1143
- "<|29.82|>": 51855,
1144
- "<|29.84|>": 51856,
1145
- "<|29.86|>": 51857,
1146
- "<|29.88|>": 51858,
1147
- "<|29.90|>": 51859,
1148
- "<|29.92|>": 51860,
1149
- "<|29.94|>": 51861,
1150
- "<|29.96|>": 51862,
1151
- "<|29.98|>": 51863,
1152
- "<|3.00|>": 50514,
1153
- "<|3.02|>": 50515,
1154
- "<|3.04|>": 50516,
1155
- "<|3.06|>": 50517,
1156
- "<|3.08|>": 50518,
1157
- "<|3.10|>": 50519,
1158
- "<|3.12|>": 50520,
1159
- "<|3.14|>": 50521,
1160
- "<|3.16|>": 50522,
1161
- "<|3.18|>": 50523,
1162
- "<|3.20|>": 50524,
1163
- "<|3.22|>": 50525,
1164
- "<|3.24|>": 50526,
1165
- "<|3.26|>": 50527,
1166
- "<|3.28|>": 50528,
1167
- "<|3.30|>": 50529,
1168
- "<|3.32|>": 50530,
1169
- "<|3.34|>": 50531,
1170
- "<|3.36|>": 50532,
1171
- "<|3.38|>": 50533,
1172
- "<|3.40|>": 50534,
1173
- "<|3.42|>": 50535,
1174
- "<|3.44|>": 50536,
1175
- "<|3.46|>": 50537,
1176
- "<|3.48|>": 50538,
1177
- "<|3.50|>": 50539,
1178
- "<|3.52|>": 50540,
1179
- "<|3.54|>": 50541,
1180
- "<|3.56|>": 50542,
1181
- "<|3.58|>": 50543,
1182
- "<|3.60|>": 50544,
1183
- "<|3.62|>": 50545,
1184
- "<|3.64|>": 50546,
1185
- "<|3.66|>": 50547,
1186
- "<|3.68|>": 50548,
1187
- "<|3.70|>": 50549,
1188
- "<|3.72|>": 50550,
1189
- "<|3.74|>": 50551,
1190
- "<|3.76|>": 50552,
1191
- "<|3.78|>": 50553,
1192
- "<|3.80|>": 50554,
1193
- "<|3.82|>": 50555,
1194
- "<|3.84|>": 50556,
1195
- "<|3.86|>": 50557,
1196
- "<|3.88|>": 50558,
1197
- "<|3.90|>": 50559,
1198
- "<|3.92|>": 50560,
1199
- "<|3.94|>": 50561,
1200
- "<|3.96|>": 50562,
1201
- "<|3.98|>": 50563,
1202
- "<|30.00|>": 51864,
1203
- "<|4.00|>": 50564,
1204
- "<|4.02|>": 50565,
1205
- "<|4.04|>": 50566,
1206
- "<|4.06|>": 50567,
1207
- "<|4.08|>": 50568,
1208
- "<|4.10|>": 50569,
1209
- "<|4.12|>": 50570,
1210
- "<|4.14|>": 50571,
1211
- "<|4.16|>": 50572,
1212
- "<|4.18|>": 50573,
1213
- "<|4.20|>": 50574,
1214
- "<|4.22|>": 50575,
1215
- "<|4.24|>": 50576,
1216
- "<|4.26|>": 50577,
1217
- "<|4.28|>": 50578,
1218
- "<|4.30|>": 50579,
1219
- "<|4.32|>": 50580,
1220
- "<|4.34|>": 50581,
1221
- "<|4.36|>": 50582,
1222
- "<|4.38|>": 50583,
1223
- "<|4.40|>": 50584,
1224
- "<|4.42|>": 50585,
1225
- "<|4.44|>": 50586,
1226
- "<|4.46|>": 50587,
1227
- "<|4.48|>": 50588,
1228
- "<|4.50|>": 50589,
1229
- "<|4.52|>": 50590,
1230
- "<|4.54|>": 50591,
1231
- "<|4.56|>": 50592,
1232
- "<|4.58|>": 50593,
1233
- "<|4.60|>": 50594,
1234
- "<|4.62|>": 50595,
1235
- "<|4.64|>": 50596,
1236
- "<|4.66|>": 50597,
1237
- "<|4.68|>": 50598,
1238
- "<|4.70|>": 50599,
1239
- "<|4.72|>": 50600,
1240
- "<|4.74|>": 50601,
1241
- "<|4.76|>": 50602,
1242
- "<|4.78|>": 50603,
1243
- "<|4.80|>": 50604,
1244
- "<|4.82|>": 50605,
1245
- "<|4.84|>": 50606,
1246
- "<|4.86|>": 50607,
1247
- "<|4.88|>": 50608,
1248
- "<|4.90|>": 50609,
1249
- "<|4.92|>": 50610,
1250
- "<|4.94|>": 50611,
1251
- "<|4.96|>": 50612,
1252
- "<|4.98|>": 50613,
1253
- "<|5.00|>": 50614,
1254
- "<|5.02|>": 50615,
1255
- "<|5.04|>": 50616,
1256
- "<|5.06|>": 50617,
1257
- "<|5.08|>": 50618,
1258
- "<|5.10|>": 50619,
1259
- "<|5.12|>": 50620,
1260
- "<|5.14|>": 50621,
1261
- "<|5.16|>": 50622,
1262
- "<|5.18|>": 50623,
1263
- "<|5.20|>": 50624,
1264
- "<|5.22|>": 50625,
1265
- "<|5.24|>": 50626,
1266
- "<|5.26|>": 50627,
1267
- "<|5.28|>": 50628,
1268
- "<|5.30|>": 50629,
1269
- "<|5.32|>": 50630,
1270
- "<|5.34|>": 50631,
1271
- "<|5.36|>": 50632,
1272
- "<|5.38|>": 50633,
1273
- "<|5.40|>": 50634,
1274
- "<|5.42|>": 50635,
1275
- "<|5.44|>": 50636,
1276
- "<|5.46|>": 50637,
1277
- "<|5.48|>": 50638,
1278
- "<|5.50|>": 50639,
1279
- "<|5.52|>": 50640,
1280
- "<|5.54|>": 50641,
1281
- "<|5.56|>": 50642,
1282
- "<|5.58|>": 50643,
1283
- "<|5.60|>": 50644,
1284
- "<|5.62|>": 50645,
1285
- "<|5.64|>": 50646,
1286
- "<|5.66|>": 50647,
1287
- "<|5.68|>": 50648,
1288
- "<|5.70|>": 50649,
1289
- "<|5.72|>": 50650,
1290
- "<|5.74|>": 50651,
1291
- "<|5.76|>": 50652,
1292
- "<|5.78|>": 50653,
1293
- "<|5.80|>": 50654,
1294
- "<|5.82|>": 50655,
1295
- "<|5.84|>": 50656,
1296
- "<|5.86|>": 50657,
1297
- "<|5.88|>": 50658,
1298
- "<|5.90|>": 50659,
1299
- "<|5.92|>": 50660,
1300
- "<|5.94|>": 50661,
1301
- "<|5.96|>": 50662,
1302
- "<|5.98|>": 50663,
1303
- "<|6.00|>": 50664,
1304
- "<|6.02|>": 50665,
1305
- "<|6.04|>": 50666,
1306
- "<|6.06|>": 50667,
1307
- "<|6.08|>": 50668,
1308
- "<|6.10|>": 50669,
1309
- "<|6.12|>": 50670,
1310
- "<|6.14|>": 50671,
1311
- "<|6.16|>": 50672,
1312
- "<|6.18|>": 50673,
1313
- "<|6.20|>": 50674,
1314
- "<|6.22|>": 50675,
1315
- "<|6.24|>": 50676,
1316
- "<|6.26|>": 50677,
1317
- "<|6.28|>": 50678,
1318
- "<|6.30|>": 50679,
1319
- "<|6.32|>": 50680,
1320
- "<|6.34|>": 50681,
1321
- "<|6.36|>": 50682,
1322
- "<|6.38|>": 50683,
1323
- "<|6.40|>": 50684,
1324
- "<|6.42|>": 50685,
1325
- "<|6.44|>": 50686,
1326
- "<|6.46|>": 50687,
1327
- "<|6.48|>": 50688,
1328
- "<|6.50|>": 50689,
1329
- "<|6.52|>": 50690,
1330
- "<|6.54|>": 50691,
1331
- "<|6.56|>": 50692,
1332
- "<|6.58|>": 50693,
1333
- "<|6.60|>": 50694,
1334
- "<|6.62|>": 50695,
1335
- "<|6.64|>": 50696,
1336
- "<|6.66|>": 50697,
1337
- "<|6.68|>": 50698,
1338
- "<|6.70|>": 50699,
1339
- "<|6.72|>": 50700,
1340
- "<|6.74|>": 50701,
1341
- "<|6.76|>": 50702,
1342
- "<|6.78|>": 50703,
1343
- "<|6.80|>": 50704,
1344
- "<|6.82|>": 50705,
1345
- "<|6.84|>": 50706,
1346
- "<|6.86|>": 50707,
1347
- "<|6.88|>": 50708,
1348
- "<|6.90|>": 50709,
1349
- "<|6.92|>": 50710,
1350
- "<|6.94|>": 50711,
1351
- "<|6.96|>": 50712,
1352
- "<|6.98|>": 50713,
1353
- "<|7.00|>": 50714,
1354
- "<|7.02|>": 50715,
1355
- "<|7.04|>": 50716,
1356
- "<|7.06|>": 50717,
1357
- "<|7.08|>": 50718,
1358
- "<|7.10|>": 50719,
1359
- "<|7.12|>": 50720,
1360
- "<|7.14|>": 50721,
1361
- "<|7.16|>": 50722,
1362
- "<|7.18|>": 50723,
1363
- "<|7.20|>": 50724,
1364
- "<|7.22|>": 50725,
1365
- "<|7.24|>": 50726,
1366
- "<|7.26|>": 50727,
1367
- "<|7.28|>": 50728,
1368
- "<|7.30|>": 50729,
1369
- "<|7.32|>": 50730,
1370
- "<|7.34|>": 50731,
1371
- "<|7.36|>": 50732,
1372
- "<|7.38|>": 50733,
1373
- "<|7.40|>": 50734,
1374
- "<|7.42|>": 50735,
1375
- "<|7.44|>": 50736,
1376
- "<|7.46|>": 50737,
1377
- "<|7.48|>": 50738,
1378
- "<|7.50|>": 50739,
1379
- "<|7.52|>": 50740,
1380
- "<|7.54|>": 50741,
1381
- "<|7.56|>": 50742,
1382
- "<|7.58|>": 50743,
1383
- "<|7.60|>": 50744,
1384
- "<|7.62|>": 50745,
1385
- "<|7.64|>": 50746,
1386
- "<|7.66|>": 50747,
1387
- "<|7.68|>": 50748,
1388
- "<|7.70|>": 50749,
1389
- "<|7.72|>": 50750,
1390
- "<|7.74|>": 50751,
1391
- "<|7.76|>": 50752,
1392
- "<|7.78|>": 50753,
1393
- "<|7.80|>": 50754,
1394
- "<|7.82|>": 50755,
1395
- "<|7.84|>": 50756,
1396
- "<|7.86|>": 50757,
1397
- "<|7.88|>": 50758,
1398
- "<|7.90|>": 50759,
1399
- "<|7.92|>": 50760,
1400
- "<|7.94|>": 50761,
1401
- "<|7.96|>": 50762,
1402
- "<|7.98|>": 50763,
1403
- "<|8.00|>": 50764,
1404
- "<|8.02|>": 50765,
1405
- "<|8.04|>": 50766,
1406
- "<|8.06|>": 50767,
1407
- "<|8.08|>": 50768,
1408
- "<|8.10|>": 50769,
1409
- "<|8.12|>": 50770,
1410
- "<|8.14|>": 50771,
1411
- "<|8.16|>": 50772,
1412
- "<|8.18|>": 50773,
1413
- "<|8.20|>": 50774,
1414
- "<|8.22|>": 50775,
1415
- "<|8.24|>": 50776,
1416
- "<|8.26|>": 50777,
1417
- "<|8.28|>": 50778,
1418
- "<|8.30|>": 50779,
1419
- "<|8.32|>": 50780,
1420
- "<|8.34|>": 50781,
1421
- "<|8.36|>": 50782,
1422
- "<|8.38|>": 50783,
1423
- "<|8.40|>": 50784,
1424
- "<|8.42|>": 50785,
1425
- "<|8.44|>": 50786,
1426
- "<|8.46|>": 50787,
1427
- "<|8.48|>": 50788,
1428
- "<|8.50|>": 50789,
1429
- "<|8.52|>": 50790,
1430
- "<|8.54|>": 50791,
1431
- "<|8.56|>": 50792,
1432
- "<|8.58|>": 50793,
1433
- "<|8.60|>": 50794,
1434
- "<|8.62|>": 50795,
1435
- "<|8.64|>": 50796,
1436
- "<|8.66|>": 50797,
1437
- "<|8.68|>": 50798,
1438
- "<|8.70|>": 50799,
1439
- "<|8.72|>": 50800,
1440
- "<|8.74|>": 50801,
1441
- "<|8.76|>": 50802,
1442
- "<|8.78|>": 50803,
1443
- "<|8.80|>": 50804,
1444
- "<|8.82|>": 50805,
1445
- "<|8.84|>": 50806,
1446
- "<|8.86|>": 50807,
1447
- "<|8.88|>": 50808,
1448
- "<|8.90|>": 50809,
1449
- "<|8.92|>": 50810,
1450
- "<|8.94|>": 50811,
1451
- "<|8.96|>": 50812,
1452
- "<|8.98|>": 50813,
1453
- "<|9.00|>": 50814,
1454
- "<|9.02|>": 50815,
1455
- "<|9.04|>": 50816,
1456
- "<|9.06|>": 50817,
1457
- "<|9.08|>": 50818,
1458
- "<|9.10|>": 50819,
1459
- "<|9.12|>": 50820,
1460
- "<|9.14|>": 50821,
1461
- "<|9.16|>": 50822,
1462
- "<|9.18|>": 50823,
1463
- "<|9.20|>": 50824,
1464
- "<|9.22|>": 50825,
1465
- "<|9.24|>": 50826,
1466
- "<|9.26|>": 50827,
1467
- "<|9.28|>": 50828,
1468
- "<|9.30|>": 50829,
1469
- "<|9.32|>": 50830,
1470
- "<|9.34|>": 50831,
1471
- "<|9.36|>": 50832,
1472
- "<|9.38|>": 50833,
1473
- "<|9.40|>": 50834,
1474
- "<|9.42|>": 50835,
1475
- "<|9.44|>": 50836,
1476
- "<|9.46|>": 50837,
1477
- "<|9.48|>": 50838,
1478
- "<|9.50|>": 50839,
1479
- "<|9.52|>": 50840,
1480
- "<|9.54|>": 50841,
1481
- "<|9.56|>": 50842,
1482
- "<|9.58|>": 50843,
1483
- "<|9.60|>": 50844,
1484
- "<|9.62|>": 50845,
1485
- "<|9.64|>": 50846,
1486
- "<|9.66|>": 50847,
1487
- "<|9.68|>": 50848,
1488
- "<|9.70|>": 50849,
1489
- "<|9.72|>": 50850,
1490
- "<|9.74|>": 50851,
1491
- "<|9.76|>": 50852,
1492
- "<|9.78|>": 50853,
1493
- "<|9.80|>": 50854,
1494
- "<|9.82|>": 50855,
1495
- "<|9.84|>": 50856,
1496
- "<|9.86|>": 50857,
1497
- "<|9.88|>": 50858,
1498
- "<|9.90|>": 50859,
1499
- "<|9.92|>": 50860,
1500
- "<|9.94|>": 50861,
1501
- "<|9.96|>": 50862,
1502
- "<|9.98|>": 50863,
1503
- "<|af|>": 50327,
1504
- "<|am|>": 50334,
1505
- "<|ar|>": 50272,
1506
- "<|as|>": 50350,
1507
- "<|az|>": 50304,
1508
- "<|ba|>": 50355,
1509
- "<|be|>": 50330,
1510
- "<|bg|>": 50292,
1511
- "<|bn|>": 50302,
1512
- "<|bo|>": 50347,
1513
- "<|br|>": 50309,
1514
- "<|bs|>": 50315,
1515
- "<|ca|>": 50270,
1516
- "<|cs|>": 50283,
1517
- "<|cy|>": 50297,
1518
- "<|da|>": 50285,
1519
- "<|de|>": 50261,
1520
- "<|el|>": 50281,
1521
- "<|en|>": 50259,
1522
- "<|es|>": 50262,
1523
- "<|et|>": 50307,
1524
- "<|eu|>": 50310,
1525
- "<|fa|>": 50300,
1526
- "<|fi|>": 50277,
1527
- "<|fo|>": 50338,
1528
- "<|fr|>": 50265,
1529
- "<|gl|>": 50319,
1530
- "<|gu|>": 50333,
1531
- "<|haw|>": 50352,
1532
- "<|ha|>": 50354,
1533
- "<|he|>": 50279,
1534
- "<|hi|>": 50276,
1535
- "<|hr|>": 50291,
1536
- "<|ht|>": 50339,
1537
- "<|hu|>": 50286,
1538
- "<|hy|>": 50312,
1539
- "<|id|>": 50275,
1540
- "<|is|>": 50311,
1541
- "<|it|>": 50274,
1542
- "<|ja|>": 50266,
1543
- "<|jw|>": 50356,
1544
- "<|ka|>": 50329,
1545
- "<|kk|>": 50316,
1546
- "<|km|>": 50323,
1547
- "<|kn|>": 50306,
1548
- "<|ko|>": 50264,
1549
- "<|la|>": 50294,
1550
- "<|lb|>": 50345,
1551
- "<|ln|>": 50353,
1552
- "<|lo|>": 50336,
1553
- "<|lt|>": 50293,
1554
- "<|lv|>": 50301,
1555
- "<|mg|>": 50349,
1556
- "<|mi|>": 50295,
1557
- "<|mk|>": 50308,
1558
- "<|ml|>": 50296,
1559
- "<|mn|>": 50314,
1560
- "<|mr|>": 50320,
1561
- "<|ms|>": 50282,
1562
- "<|mt|>": 50343,
1563
- "<|my|>": 50346,
1564
- "<|ne|>": 50313,
1565
- "<|nl|>": 50271,
1566
- "<|nn|>": 50342,
1567
- "<|nocaptions|>": 50362,
1568
- "<|notimestamps|>": 50363,
1569
- "<|no|>": 50288,
1570
- "<|oc|>": 50328,
1571
- "<|pa|>": 50321,
1572
- "<|pl|>": 50269,
1573
- "<|ps|>": 50340,
1574
- "<|pt|>": 50267,
1575
- "<|ro|>": 50284,
1576
- "<|ru|>": 50263,
1577
- "<|sa|>": 50344,
1578
- "<|sd|>": 50332,
1579
- "<|si|>": 50322,
1580
- "<|sk|>": 50298,
1581
- "<|sl|>": 50305,
1582
- "<|sn|>": 50324,
1583
- "<|so|>": 50326,
1584
- "<|sq|>": 50317,
1585
- "<|sr|>": 50303,
1586
- "<|startoflm|>": 50360,
1587
- "<|startofprev|>": 50361,
1588
- "<|startoftranscript|>": 50258,
1589
- "<|su|>": 50357,
1590
- "<|sv|>": 50273,
1591
- "<|sw|>": 50318,
1592
- "<|ta|>": 50287,
1593
- "<|te|>": 50299,
1594
- "<|tg|>": 50331,
1595
- "<|th|>": 50289,
1596
- "<|tk|>": 50341,
1597
- "<|tl|>": 50348,
1598
- "<|transcribe|>": 50359,
1599
- "<|translate|>": 50358,
1600
- "<|tr|>": 50268,
1601
- "<|tt|>": 50351,
1602
- "<|uk|>": 50280,
1603
- "<|ur|>": 50290,
1604
- "<|uz|>": 50337,
1605
- "<|vi|>": 50278,
1606
- "<|yi|>": 50335,
1607
- "<|yo|>": 50325,
1608
- "<|zh|>": 50260
1609
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SALMONN_PATHS/whisper-large-v2/config.json DELETED
@@ -1,144 +0,0 @@
1
- {
2
- "_name_or_path": "openai/whisper-large-v2",
3
- "activation_dropout": 0.0,
4
- "activation_function": "gelu",
5
- "architectures": [
6
- "WhisperForConditionalGeneration"
7
- ],
8
- "attention_dropout": 0.0,
9
- "begin_suppress_tokens": [
10
- 220,
11
- 50257
12
- ],
13
- "bos_token_id": 50257,
14
- "d_model": 1280,
15
- "decoder_attention_heads": 20,
16
- "decoder_ffn_dim": 5120,
17
- "decoder_layerdrop": 0.0,
18
- "decoder_layers": 32,
19
- "decoder_start_token_id": 50258,
20
- "dropout": 0.0,
21
- "encoder_attention_heads": 20,
22
- "encoder_ffn_dim": 5120,
23
- "encoder_layerdrop": 0.0,
24
- "encoder_layers": 32,
25
- "eos_token_id": 50257,
26
- "forced_decoder_ids": [
27
- [
28
- 1,
29
- 50259
30
- ],
31
- [
32
- 2,
33
- 50359
34
- ],
35
- [
36
- 3,
37
- 50363
38
- ]
39
- ],
40
- "init_std": 0.02,
41
- "is_encoder_decoder": true,
42
- "max_length": 448,
43
- "max_source_positions": 1500,
44
- "max_target_positions": 448,
45
- "model_type": "whisper",
46
- "num_hidden_layers": 32,
47
- "num_mel_bins": 80,
48
- "pad_token_id": 50257,
49
- "scale_embedding": false,
50
- "suppress_tokens": [
51
- 1,
52
- 2,
53
- 7,
54
- 8,
55
- 9,
56
- 10,
57
- 14,
58
- 25,
59
- 26,
60
- 27,
61
- 28,
62
- 29,
63
- 31,
64
- 58,
65
- 59,
66
- 60,
67
- 61,
68
- 62,
69
- 63,
70
- 90,
71
- 91,
72
- 92,
73
- 93,
74
- 359,
75
- 503,
76
- 522,
77
- 542,
78
- 873,
79
- 893,
80
- 902,
81
- 918,
82
- 922,
83
- 931,
84
- 1350,
85
- 1853,
86
- 1982,
87
- 2460,
88
- 2627,
89
- 3246,
90
- 3253,
91
- 3268,
92
- 3536,
93
- 3846,
94
- 3961,
95
- 4183,
96
- 4667,
97
- 6585,
98
- 6647,
99
- 7273,
100
- 9061,
101
- 9383,
102
- 10428,
103
- 10929,
104
- 11938,
105
- 12033,
106
- 12331,
107
- 12562,
108
- 13793,
109
- 14157,
110
- 14635,
111
- 15265,
112
- 15618,
113
- 16553,
114
- 16604,
115
- 18362,
116
- 18956,
117
- 20075,
118
- 21675,
119
- 22520,
120
- 26130,
121
- 26161,
122
- 26435,
123
- 28279,
124
- 29464,
125
- 31650,
126
- 32302,
127
- 32470,
128
- 36865,
129
- 42863,
130
- 47425,
131
- 49870,
132
- 50254,
133
- 50258,
134
- 50358,
135
- 50359,
136
- 50360,
137
- 50361,
138
- 50362
139
- ],
140
- "torch_dtype": "float32",
141
- "transformers_version": "4.27.0.dev0",
142
- "use_cache": true,
143
- "vocab_size": 51865
144
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SALMONN_PATHS/whisper-large-v2/flax_model.msgpack DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:232ca989cd2bc0830e0edf975e0475cdb3fea944c9eb9b56d923189adf19f8e3
3
- size 6173264923
 
 
 
 
SALMONN_PATHS/whisper-large-v2/generation_config.json DELETED
@@ -1,316 +0,0 @@
1
- {
2
- "alignment_heads": [
3
- [
4
- 10,
5
- 12
6
- ],
7
- [
8
- 13,
9
- 17
10
- ],
11
- [
12
- 16,
13
- 11
14
- ],
15
- [
16
- 16,
17
- 12
18
- ],
19
- [
20
- 16,
21
- 13
22
- ],
23
- [
24
- 17,
25
- 15
26
- ],
27
- [
28
- 17,
29
- 16
30
- ],
31
- [
32
- 18,
33
- 4
34
- ],
35
- [
36
- 18,
37
- 11
38
- ],
39
- [
40
- 18,
41
- 19
42
- ],
43
- [
44
- 19,
45
- 11
46
- ],
47
- [
48
- 21,
49
- 2
50
- ],
51
- [
52
- 21,
53
- 3
54
- ],
55
- [
56
- 22,
57
- 3
58
- ],
59
- [
60
- 22,
61
- 9
62
- ],
63
- [
64
- 22,
65
- 12
66
- ],
67
- [
68
- 23,
69
- 5
70
- ],
71
- [
72
- 23,
73
- 7
74
- ],
75
- [
76
- 23,
77
- 13
78
- ],
79
- [
80
- 25,
81
- 5
82
- ],
83
- [
84
- 26,
85
- 1
86
- ],
87
- [
88
- 26,
89
- 12
90
- ],
91
- [
92
- 27,
93
- 15
94
- ]
95
- ],
96
- "begin_suppress_tokens": [
97
- 220,
98
- 50257
99
- ],
100
- "bos_token_id": 50257,
101
- "decoder_start_token_id": 50258,
102
- "eos_token_id": 50257,
103
- "forced_decoder_ids": [
104
- [
105
- 1,
106
- null
107
- ],
108
- [
109
- 2,
110
- 50359
111
- ]
112
- ],
113
- "is_multilingual": true,
114
- "lang_to_id": {
115
- "<|af|>": 50327,
116
- "<|am|>": 50334,
117
- "<|ar|>": 50272,
118
- "<|as|>": 50350,
119
- "<|az|>": 50304,
120
- "<|ba|>": 50355,
121
- "<|be|>": 50330,
122
- "<|bg|>": 50292,
123
- "<|bn|>": 50302,
124
- "<|bo|>": 50347,
125
- "<|br|>": 50309,
126
- "<|bs|>": 50315,
127
- "<|ca|>": 50270,
128
- "<|cs|>": 50283,
129
- "<|cy|>": 50297,
130
- "<|da|>": 50285,
131
- "<|de|>": 50261,
132
- "<|el|>": 50281,
133
- "<|en|>": 50259,
134
- "<|es|>": 50262,
135
- "<|et|>": 50307,
136
- "<|eu|>": 50310,
137
- "<|fa|>": 50300,
138
- "<|fi|>": 50277,
139
- "<|fo|>": 50338,
140
- "<|fr|>": 50265,
141
- "<|gl|>": 50319,
142
- "<|gu|>": 50333,
143
- "<|haw|>": 50352,
144
- "<|ha|>": 50354,
145
- "<|he|>": 50279,
146
- "<|hi|>": 50276,
147
- "<|hr|>": 50291,
148
- "<|ht|>": 50339,
149
- "<|hu|>": 50286,
150
- "<|hy|>": 50312,
151
- "<|id|>": 50275,
152
- "<|is|>": 50311,
153
- "<|it|>": 50274,
154
- "<|ja|>": 50266,
155
- "<|jw|>": 50356,
156
- "<|ka|>": 50329,
157
- "<|kk|>": 50316,
158
- "<|km|>": 50323,
159
- "<|kn|>": 50306,
160
- "<|ko|>": 50264,
161
- "<|la|>": 50294,
162
- "<|lb|>": 50345,
163
- "<|ln|>": 50353,
164
- "<|lo|>": 50336,
165
- "<|lt|>": 50293,
166
- "<|lv|>": 50301,
167
- "<|mg|>": 50349,
168
- "<|mi|>": 50295,
169
- "<|mk|>": 50308,
170
- "<|ml|>": 50296,
171
- "<|mn|>": 50314,
172
- "<|mr|>": 50320,
173
- "<|ms|>": 50282,
174
- "<|mt|>": 50343,
175
- "<|my|>": 50346,
176
- "<|ne|>": 50313,
177
- "<|nl|>": 50271,
178
- "<|nn|>": 50342,
179
- "<|no|>": 50288,
180
- "<|oc|>": 50328,
181
- "<|pa|>": 50321,
182
- "<|pl|>": 50269,
183
- "<|ps|>": 50340,
184
- "<|pt|>": 50267,
185
- "<|ro|>": 50284,
186
- "<|ru|>": 50263,
187
- "<|sa|>": 50344,
188
- "<|sd|>": 50332,
189
- "<|si|>": 50322,
190
- "<|sk|>": 50298,
191
- "<|sl|>": 50305,
192
- "<|sn|>": 50324,
193
- "<|so|>": 50326,
194
- "<|sq|>": 50317,
195
- "<|sr|>": 50303,
196
- "<|su|>": 50357,
197
- "<|sv|>": 50273,
198
- "<|sw|>": 50318,
199
- "<|ta|>": 50287,
200
- "<|te|>": 50299,
201
- "<|tg|>": 50331,
202
- "<|th|>": 50289,
203
- "<|tk|>": 50341,
204
- "<|tl|>": 50348,
205
- "<|tr|>": 50268,
206
- "<|tt|>": 50351,
207
- "<|uk|>": 50280,
208
- "<|ur|>": 50290,
209
- "<|uz|>": 50337,
210
- "<|vi|>": 50278,
211
- "<|yi|>": 50335,
212
- "<|yo|>": 50325,
213
- "<|zh|>": 50260
214
- },
215
- "max_initial_timestamp_index": 50,
216
- "max_length": 448,
217
- "no_timestamps_token_id": 50363,
218
- "pad_token_id": 50257,
219
- "prev_sot_token_id": 50361,
220
- "return_timestamps": false,
221
- "suppress_tokens": [
222
- 1,
223
- 2,
224
- 7,
225
- 8,
226
- 9,
227
- 10,
228
- 14,
229
- 25,
230
- 26,
231
- 27,
232
- 28,
233
- 29,
234
- 31,
235
- 58,
236
- 59,
237
- 60,
238
- 61,
239
- 62,
240
- 63,
241
- 90,
242
- 91,
243
- 92,
244
- 93,
245
- 359,
246
- 503,
247
- 522,
248
- 542,
249
- 873,
250
- 893,
251
- 902,
252
- 918,
253
- 922,
254
- 931,
255
- 1350,
256
- 1853,
257
- 1982,
258
- 2460,
259
- 2627,
260
- 3246,
261
- 3253,
262
- 3268,
263
- 3536,
264
- 3846,
265
- 3961,
266
- 4183,
267
- 4667,
268
- 6585,
269
- 6647,
270
- 7273,
271
- 9061,
272
- 9383,
273
- 10428,
274
- 10929,
275
- 11938,
276
- 12033,
277
- 12331,
278
- 12562,
279
- 13793,
280
- 14157,
281
- 14635,
282
- 15265,
283
- 15618,
284
- 16553,
285
- 16604,
286
- 18362,
287
- 18956,
288
- 20075,
289
- 21675,
290
- 22520,
291
- 26130,
292
- 26161,
293
- 26435,
294
- 28279,
295
- 29464,
296
- 31650,
297
- 32302,
298
- 32470,
299
- 36865,
300
- 42863,
301
- 47425,
302
- 49870,
303
- 50254,
304
- 50258,
305
- 50358,
306
- 50359,
307
- 50360,
308
- 50361,
309
- 50362
310
- ],
311
- "task_to_id": {
312
- "transcribe": 50359,
313
- "translate": 50358
314
- },
315
- "transformers_version": "4.31.0.dev0"
316
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SALMONN_PATHS/whisper-large-v2/merges.txt DELETED
The diff for this file is too large to render. See raw diff
 
SALMONN_PATHS/whisper-large-v2/model.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:57a1ba2a82c093cabff2541409ae778c97145378b9ddfa722763cb1cb8f9020b
3
- size 6173370152
 
 
 
 
SALMONN_PATHS/whisper-large-v2/normalizer.json DELETED
@@ -1,1742 +0,0 @@
1
- {
2
- "accessorise": "accessorize",
3
- "accessorised": "accessorized",
4
- "accessorises": "accessorizes",
5
- "accessorising": "accessorizing",
6
- "acclimatisation": "acclimatization",
7
- "acclimatise": "acclimatize",
8
- "acclimatised": "acclimatized",
9
- "acclimatises": "acclimatizes",
10
- "acclimatising": "acclimatizing",
11
- "accoutrements": "accouterments",
12
- "aeon": "eon",
13
- "aeons": "eons",
14
- "aerogramme": "aerogram",
15
- "aerogrammes": "aerograms",
16
- "aeroplane": "airplane",
17
- "aeroplanes": "airplanes",
18
- "aesthete": "esthete",
19
- "aesthetes": "esthetes",
20
- "aesthetic": "esthetic",
21
- "aesthetically": "esthetically",
22
- "aesthetics": "esthetics",
23
- "aetiology": "etiology",
24
- "ageing": "aging",
25
- "aggrandisement": "aggrandizement",
26
- "agonise": "agonize",
27
- "agonised": "agonized",
28
- "agonises": "agonizes",
29
- "agonising": "agonizing",
30
- "agonisingly": "agonizingly",
31
- "almanack": "almanac",
32
- "almanacks": "almanacs",
33
- "aluminium": "aluminum",
34
- "amortisable": "amortizable",
35
- "amortisation": "amortization",
36
- "amortisations": "amortizations",
37
- "amortise": "amortize",
38
- "amortised": "amortized",
39
- "amortises": "amortizes",
40
- "amortising": "amortizing",
41
- "amphitheatre": "amphitheater",
42
- "amphitheatres": "amphitheaters",
43
- "anaemia": "anemia",
44
- "anaemic": "anemic",
45
- "anaesthesia": "anesthesia",
46
- "anaesthetic": "anesthetic",
47
- "anaesthetics": "anesthetics",
48
- "anaesthetise": "anesthetize",
49
- "anaesthetised": "anesthetized",
50
- "anaesthetises": "anesthetizes",
51
- "anaesthetising": "anesthetizing",
52
- "anaesthetist": "anesthetist",
53
- "anaesthetists": "anesthetists",
54
- "anaesthetize": "anesthetize",
55
- "anaesthetized": "anesthetized",
56
- "anaesthetizes": "anesthetizes",
57
- "anaesthetizing": "anesthetizing",
58
- "analogue": "analog",
59
- "analogues": "analogs",
60
- "analyse": "analyze",
61
- "analysed": "analyzed",
62
- "analyses": "analyzes",
63
- "analysing": "analyzing",
64
- "anglicise": "anglicize",
65
- "anglicised": "anglicized",
66
- "anglicises": "anglicizes",
67
- "anglicising": "anglicizing",
68
- "annualised": "annualized",
69
- "antagonise": "antagonize",
70
- "antagonised": "antagonized",
71
- "antagonises": "antagonizes",
72
- "antagonising": "antagonizing",
73
- "apologise": "apologize",
74
- "apologised": "apologized",
75
- "apologises": "apologizes",
76
- "apologising": "apologizing",
77
- "appal": "appall",
78
- "appals": "appalls",
79
- "appetiser": "appetizer",
80
- "appetisers": "appetizers",
81
- "appetising": "appetizing",
82
- "appetisingly": "appetizingly",
83
- "arbour": "arbor",
84
- "arbours": "arbors",
85
- "archaeologically": "archeologically",
86
- "archaeologist": "archeologist",
87
- "archaeologists": "archeologists",
88
- "archaeology": "archeology</span>",
89
- "archeological": "archaeological",
90
- "ardour": "ardor",
91
- "armour": "armor",
92
- "armoured": "armored",
93
- "armourer": "armorer",
94
- "armourers": "armorers",
95
- "armouries": "armories",
96
- "armoury": "armory",
97
- "artefact": "artifact",
98
- "artefacts": "artifacts",
99
- "authorise": "authorize",
100
- "authorised": "authorized",
101
- "authorises": "authorizes",
102
- "authorising": "authorizing",
103
- "axe": "ax",
104
- "backpedalled": "backpedaled",
105
- "backpedalling": "backpedaling",
106
- "bannister": "banister",
107
- "bannisters": "banisters",
108
- "baptise": "baptize",
109
- "baptised": "baptized",
110
- "baptises": "baptizes",
111
- "baptising": "baptizing",
112
- "bastardise": "bastardize",
113
- "bastardised": "bastardized",
114
- "bastardises": "bastardizes",
115
- "bastardising": "bastardizing",
116
- "battleax": "battleaxe",
117
- "baulk": "balk",
118
- "baulked": "balked",
119
- "baulking": "balking",
120
- "baulks": "balks",
121
- "bedevilled": "bedeviled",
122
- "bedevilling": "bedeviling",
123
- "behaviour": "behavior",
124
- "behavioural": "behavioral",
125
- "behaviourism": "behaviorism",
126
- "behaviourist": "behaviorist",
127
- "behaviourists": "behaviorists",
128
- "behaviours": "behaviors",
129
- "behove": "behoove",
130
- "behoved": "behooved",
131
- "behoves": "behooves",
132
- "bejewelled": "bejeweled",
133
- "belabour": "belabor",
134
- "belaboured": "belabored",
135
- "belabouring": "belaboring",
136
- "belabours": "belabors",
137
- "bevelled": "beveled",
138
- "bevvies": "bevies",
139
- "bevvy": "bevy",
140
- "biassed": "biased",
141
- "biassing": "biasing",
142
- "bingeing": "binging",
143
- "bougainvillaea": "bougainvillea",
144
- "bougainvillaeas": "bougainvilleas",
145
- "bowdlerise": "bowdlerize",
146
- "bowdlerised": "bowdlerized",
147
- "bowdlerises": "bowdlerizes",
148
- "bowdlerising": "bowdlerizing",
149
- "breathalyse": "breathalyze",
150
- "breathalysed": "breathalyzed",
151
- "breathalyser": "breathalyzer",
152
- "breathalysers": "breathalyzers",
153
- "breathalyses": "breathalyzes",
154
- "breathalysing": "breathalyzing",
155
- "brutalise": "brutalize",
156
- "brutalised": "brutalized",
157
- "brutalises": "brutalizes",
158
- "brutalising": "brutalizing",
159
- "busses": "buses",
160
- "bussing": "busing",
161
- "caesarean": "cesarean",
162
- "caesareans": "cesareans",
163
- "calibre": "caliber",
164
- "calibres": "calibers",
165
- "calliper": "caliper",
166
- "callipers": "calipers",
167
- "callisthenics": "calisthenics",
168
- "canalise": "canalize",
169
- "canalised": "canalized",
170
- "canalises": "canalizes",
171
- "canalising": "canalizing",
172
- "cancelation": "cancellation",
173
- "cancelations": "cancellations",
174
- "cancelled": "canceled",
175
- "cancelling": "canceling",
176
- "candour": "candor",
177
- "cannibalise": "cannibalize",
178
- "cannibalised": "cannibalized",
179
- "cannibalises": "cannibalizes",
180
- "cannibalising": "cannibalizing",
181
- "canonise": "canonize",
182
- "canonised": "canonized",
183
- "canonises": "canonizes",
184
- "canonising": "canonizing",
185
- "capitalise": "capitalize",
186
- "capitalised": "capitalized",
187
- "capitalises": "capitalizes",
188
- "capitalising": "capitalizing",
189
- "caramelise": "caramelize",
190
- "caramelised": "caramelized",
191
- "caramelises": "caramelizes",
192
- "caramelising": "caramelizing",
193
- "carbonise": "carbonize",
194
- "carbonised": "carbonized",
195
- "carbonises": "carbonizes",
196
- "carbonising": "carbonizing",
197
- "carolled": "caroled",
198
- "carolling": "caroling",
199
- "catalogue": "catalog",
200
- "catalogued": "cataloged",
201
- "catalogues": "catalogs",
202
- "cataloguing": "cataloging",
203
- "catalyse": "catalyze",
204
- "catalysed": "catalyzed",
205
- "catalyses": "catalyzes",
206
- "catalysing": "catalyzing",
207
- "categorise": "categorize",
208
- "categorised": "categorized",
209
- "categorises": "categorizes",
210
- "categorising": "categorizing",
211
- "cauterise": "cauterize",
212
- "cauterised": "cauterized",
213
- "cauterises": "cauterizes",
214
- "cauterising": "cauterizing",
215
- "cavilled": "caviled",
216
- "cavilling": "caviling",
217
- "centigramme": "centigram",
218
- "centigrammes": "centigrams",
219
- "centilitre": "centiliter",
220
- "centilitres": "centiliters",
221
- "centimetre": "centimeter",
222
- "centimetres": "centimeters",
223
- "centralise": "centralize",
224
- "centralised": "centralized",
225
- "centralises": "centralizes",
226
- "centralising": "centralizing",
227
- "centre": "center",
228
- "centred": "centered",
229
- "centrefold": "centerfold",
230
- "centrefolds": "centerfolds",
231
- "centrepiece": "centerpiece",
232
- "centrepieces": "centerpieces",
233
- "centres": "centers",
234
- "channelled": "channeled",
235
- "channelling": "channeling",
236
- "characterise": "characterize",
237
- "characterised": "characterized",
238
- "characterises": "characterizes",
239
- "characterising": "characterizing",
240
- "cheque": "check",
241
- "chequebook": "checkbook",
242
- "chequebooks": "checkbooks",
243
- "chequered": "checkered",
244
- "cheques": "checks",
245
- "chilli": "chili",
246
- "chimaera": "chimera",
247
- "chimaeras": "chimeras",
248
- "chiselled": "chiseled",
249
- "chiselling": "chiseling",
250
- "circularise": "circularize",
251
- "circularised": "circularized",
252
- "circularises": "circularizes",
253
- "circularising": "circularizing",
254
- "civilise": "civilize",
255
- "civilised": "civilized",
256
- "civilises": "civilizes",
257
- "civilising": "civilizing",
258
- "clamour": "clamor",
259
- "clamoured": "clamored",
260
- "clamouring": "clamoring",
261
- "clamours": "clamors",
262
- "clangour": "clangor",
263
- "clarinettist": "clarinetist",
264
- "clarinettists": "clarinetists",
265
- "collectivise": "collectivize",
266
- "collectivised": "collectivized",
267
- "collectivises": "collectivizes",
268
- "collectivising": "collectivizing",
269
- "colonisation": "colonization",
270
- "colonise": "colonize",
271
- "colonised": "colonized",
272
- "coloniser": "colonizer",
273
- "colonisers": "colonizers",
274
- "colonises": "colonizes",
275
- "colonising": "colonizing",
276
- "colour": "color",
277
- "colourant": "colorant",
278
- "colourants": "colorants",
279
- "coloured": "colored",
280
- "coloureds": "coloreds",
281
- "colourful": "colorful",
282
- "colourfully": "colorfully",
283
- "colouring": "coloring",
284
- "colourize": "colorize",
285
- "colourized": "colorized",
286
- "colourizes": "colorizes",
287
- "colourizing": "colorizing",
288
- "colourless": "colorless",
289
- "colours": "colors",
290
- "commercialise": "commercialize",
291
- "commercialised": "commercialized",
292
- "commercialises": "commercializes",
293
- "commercialising": "commercializing",
294
- "compartmentalise": "compartmentalize",
295
- "compartmentalised": "compartmentalized",
296
- "compartmentalises": "compartmentalizes",
297
- "compartmentalising": "compartmentalizing",
298
- "computerise": "computerize",
299
- "computerised": "computerized",
300
- "computerises": "computerizes",
301
- "computerising": "computerizing",
302
- "conceptualise": "conceptualize",
303
- "conceptualised": "conceptualized",
304
- "conceptualises": "conceptualizes",
305
- "conceptualising": "conceptualizing",
306
- "connexion": "connection",
307
- "connexions": "connections",
308
- "contextualise": "contextualize",
309
- "contextualised": "contextualized",
310
- "contextualises": "contextualizes",
311
- "contextualising": "contextualizing",
312
- "cosier": "cozier",
313
- "cosies": "cozies",
314
- "cosiest": "coziest",
315
- "cosily": "cozily",
316
- "cosiness": "coziness",
317
- "cosy": "cozy",
318
- "councillor": "councilor",
319
- "councillors": "councilors",
320
- "counselled": "counseled",
321
- "counselling": "counseling",
322
- "counsellor": "counselor",
323
- "counsellors": "counselors",
324
- "crenelated": "crenellated",
325
- "criminalise": "criminalize",
326
- "criminalised": "criminalized",
327
- "criminalises": "criminalizes",
328
- "criminalising": "criminalizing",
329
- "criticise": "criticize",
330
- "criticised": "criticized",
331
- "criticises": "criticizes",
332
- "criticising": "criticizing",
333
- "crueller": "crueler",
334
- "cruellest": "cruelest",
335
- "crystallisation": "crystallization",
336
- "crystallise": "crystallize",
337
- "crystallised": "crystallized",
338
- "crystallises": "crystallizes",
339
- "crystallising": "crystallizing",
340
- "cudgelled": "cudgeled",
341
- "cudgelling": "cudgeling",
342
- "customise": "customize",
343
- "customised": "customized",
344
- "customises": "customizes",
345
- "customising": "customizing",
346
- "cypher": "cipher",
347
- "cyphers": "ciphers",
348
- "decentralisation": "decentralization",
349
- "decentralise": "decentralize",
350
- "decentralised": "decentralized",
351
- "decentralises": "decentralizes",
352
- "decentralising": "decentralizing",
353
- "decriminalisation": "decriminalization",
354
- "decriminalise": "decriminalize",
355
- "decriminalised": "decriminalized",
356
- "decriminalises": "decriminalizes",
357
- "decriminalising": "decriminalizing",
358
- "defence": "defense",
359
- "defenceless": "defenseless",
360
- "defences": "defenses",
361
- "dehumanisation": "dehumanization",
362
- "dehumanise": "dehumanize",
363
- "dehumanised": "dehumanized",
364
- "dehumanises": "dehumanizes",
365
- "dehumanising": "dehumanizing",
366
- "demeanour": "demeanor",
367
- "demilitarisation": "demilitarization",
368
- "demilitarise": "demilitarize",
369
- "demilitarised": "demilitarized",
370
- "demilitarises": "demilitarizes",
371
- "demilitarising": "demilitarizing",
372
- "demobilisation": "demobilization",
373
- "demobilise": "demobilize",
374
- "demobilised": "demobilized",
375
- "demobilises": "demobilizes",
376
- "demobilising": "demobilizing",
377
- "democratisation": "democratization",
378
- "democratise": "democratize",
379
- "democratised": "democratized",
380
- "democratises": "democratizes",
381
- "democratising": "democratizing",
382
- "demonise": "demonize",
383
- "demonised": "demonized",
384
- "demonises": "demonizes",
385
- "demonising": "demonizing",
386
- "demoralisation": "demoralization",
387
- "demoralise": "demoralize",
388
- "demoralised": "demoralized",
389
- "demoralises": "demoralizes",
390
- "demoralising": "demoralizing",
391
- "denationalisation": "denationalization",
392
- "denationalise": "denationalize",
393
- "denationalised": "denationalized",
394
- "denationalises": "denationalizes",
395
- "denationalising": "denationalizing",
396
- "deodorise": "deodorize",
397
- "deodorised": "deodorized",
398
- "deodorises": "deodorizes",
399
- "deodorising": "deodorizing",
400
- "depersonalise": "depersonalize",
401
- "depersonalised": "depersonalized",
402
- "depersonalises": "depersonalizes",
403
- "depersonalising": "depersonalizing",
404
- "deputise": "deputize",
405
- "deputised": "deputized",
406
- "deputises": "deputizes",
407
- "deputising": "deputizing",
408
- "desensitisation": "desensitization",
409
- "desensitise": "desensitize",
410
- "desensitised": "desensitized",
411
- "desensitises": "desensitizes",
412
- "desensitising": "desensitizing",
413
- "destabilisation": "destabilization",
414
- "destabilise": "destabilize",
415
- "destabilised": "destabilized",
416
- "destabilises": "destabilizes",
417
- "destabilising": "destabilizing",
418
- "dialled": "dialed",
419
- "dialling": "dialing",
420
- "dialogue": "dialog",
421
- "dialogues": "dialogs",
422
- "diarrhoea": "diarrhea",
423
- "digitise": "digitize",
424
- "digitised": "digitized",
425
- "digitises": "digitizes",
426
- "digitising": "digitizing",
427
- "disc": "disk",
428
- "discolour": "discolor",
429
- "discoloured": "discolored",
430
- "discolouring": "discoloring",
431
- "discolours": "discolors",
432
- "discs": "disks",
433
- "disembowelled": "disemboweled",
434
- "disembowelling": "disemboweling",
435
- "disfavour": "disfavor",
436
- "dishevelled": "disheveled",
437
- "dishonour": "dishonor",
438
- "dishonourable": "dishonorable",
439
- "dishonourably": "dishonorably",
440
- "dishonoured": "dishonored",
441
- "dishonouring": "dishonoring",
442
- "dishonours": "dishonors",
443
- "disorganisation": "disorganization",
444
- "disorganised": "disorganized",
445
- "distil": "distill",
446
- "distils": "distills",
447
- "dramatisation": "dramatization",
448
- "dramatisations": "dramatizations",
449
- "dramatise": "dramatize",
450
- "dramatised": "dramatized",
451
- "dramatises": "dramatizes",
452
- "dramatising": "dramatizing",
453
- "draught": "draft",
454
- "draughtboard": "draftboard",
455
- "draughtboards": "draftboards",
456
- "draughtier": "draftier",
457
- "draughtiest": "draftiest",
458
- "draughts": "drafts",
459
- "draughtsman": "draftsman",
460
- "draughtsmanship": "draftsmanship",
461
- "draughtsmen": "draftsmen",
462
- "draughtswoman": "draftswoman",
463
- "draughtswomen": "draftswomen",
464
- "draughty": "drafty",
465
- "drivelled": "driveled",
466
- "drivelling": "driveling",
467
- "duelled": "dueled",
468
- "duelling": "dueling",
469
- "economise": "economize",
470
- "economised": "economized",
471
- "economises": "economizes",
472
- "economising": "economizing",
473
- "editorialise": "editorialize",
474
- "editorialised": "editorialized",
475
- "editorialises": "editorializes",
476
- "editorialising": "editorializing",
477
- "edoema": "edema",
478
- "empathise": "empathize",
479
- "empathised": "empathized",
480
- "empathises": "empathizes",
481
- "empathising": "empathizing",
482
- "emphasise": "emphasize",
483
- "emphasised": "emphasized",
484
- "emphasises": "emphasizes",
485
- "emphasising": "emphasizing",
486
- "enamelled": "enameled",
487
- "enamelling": "enameling",
488
- "enamoured": "enamored",
489
- "encyclopaedia": "encyclopedia",
490
- "encyclopaedias": "encyclopedias",
491
- "encyclopaedic": "encyclopedic",
492
- "endeavour": "endeavor",
493
- "endeavoured": "endeavored",
494
- "endeavouring": "endeavoring",
495
- "endeavours": "endeavors",
496
- "energise": "energize",
497
- "energised": "energized",
498
- "energises": "energizes",
499
- "energising": "energizing",
500
- "enrol": "enroll",
501
- "enrols": "enrolls",
502
- "enthral": "enthrall",
503
- "enthrals": "enthralls",
504
- "epaulette": "epaulet",
505
- "epaulettes": "epaulets",
506
- "epicentre": "epicenter",
507
- "epicentres": "epicenters",
508
- "epilogue": "epilog",
509
- "epilogues": "epilogs",
510
- "epitomise": "epitomize",
511
- "epitomised": "epitomized",
512
- "epitomises": "epitomizes",
513
- "epitomising": "epitomizing",
514
- "equalisation": "equalization",
515
- "equalise": "equalize",
516
- "equalised": "equalized",
517
- "equaliser": "equalizer",
518
- "equalisers": "equalizers",
519
- "equalises": "equalizes",
520
- "equalising": "equalizing",
521
- "eulogise": "eulogize",
522
- "eulogised": "eulogized",
523
- "eulogises": "eulogizes",
524
- "eulogising": "eulogizing",
525
- "evangelise": "evangelize",
526
- "evangelised": "evangelized",
527
- "evangelises": "evangelizes",
528
- "evangelising": "evangelizing",
529
- "exorcise": "exorcize",
530
- "exorcised": "exorcized",
531
- "exorcises": "exorcizes",
532
- "exorcising": "exorcizing",
533
- "extemporisation": "extemporization",
534
- "extemporise": "extemporize",
535
- "extemporised": "extemporized",
536
- "extemporises": "extemporizes",
537
- "extemporising": "extemporizing",
538
- "externalisation": "externalization",
539
- "externalisations": "externalizations",
540
- "externalise": "externalize",
541
- "externalised": "externalized",
542
- "externalises": "externalizes",
543
- "externalising": "externalizing",
544
- "factorise": "factorize",
545
- "factorised": "factorized",
546
- "factorises": "factorizes",
547
- "factorising": "factorizing",
548
- "faecal": "fecal",
549
- "faeces": "feces",
550
- "familiarisation": "familiarization",
551
- "familiarise": "familiarize",
552
- "familiarised": "familiarized",
553
- "familiarises": "familiarizes",
554
- "familiarising": "familiarizing",
555
- "fantasise": "fantasize",
556
- "fantasised": "fantasized",
557
- "fantasises": "fantasizes",
558
- "fantasising": "fantasizing",
559
- "favour": "favor",
560
- "favourable": "favorable",
561
- "favourably": "favorably",
562
- "favoured": "favored",
563
- "favouring": "favoring",
564
- "favourite": "favorite",
565
- "favourites": "favorites",
566
- "favouritism": "favoritism",
567
- "favours": "favors",
568
- "feminise": "feminize",
569
- "feminised": "feminized",
570
- "feminises": "feminizes",
571
- "feminising": "feminizing",
572
- "fertilisation": "fertilization",
573
- "fertilise": "fertilize",
574
- "fertilised": "fertilized",
575
- "fertiliser": "fertilizer",
576
- "fertilisers": "fertilizers",
577
- "fertilises": "fertilizes",
578
- "fertilising": "fertilizing",
579
- "fervour": "fervor",
580
- "fibre": "fiber",
581
- "fibreglass": "fiberglass",
582
- "fibres": "fibers",
583
- "fictionalisation": "fictionalization",
584
- "fictionalisations": "fictionalizations",
585
- "fictionalise": "fictionalize",
586
- "fictionalised": "fictionalized",
587
- "fictionalises": "fictionalizes",
588
- "fictionalising": "fictionalizing",
589
- "fillet": "filet",
590
- "filleted": "fileted",
591
- "filleting": "fileting",
592
- "fillets": "filets",
593
- "finalisation": "finalization",
594
- "finalise": "finalize",
595
- "finalised": "finalized",
596
- "finalises": "finalizes",
597
- "finalising": "finalizing",
598
- "flautist": "flutist",
599
- "flautists": "flutists",
600
- "flavour": "flavor",
601
- "flavoured": "flavored",
602
- "flavouring": "flavoring",
603
- "flavourings": "flavorings",
604
- "flavourless": "flavorless",
605
- "flavours": "flavors",
606
- "flavoursome": "flavorsome",
607
- "flyer / flier": "flier / flyer",
608
- "foetal": "fetal",
609
- "foetid": "fetid",
610
- "foetus": "fetus",
611
- "foetuses": "fetuses",
612
- "formalisation": "formalization",
613
- "formalise": "formalize",
614
- "formalised": "formalized",
615
- "formalises": "formalizes",
616
- "formalising": "formalizing",
617
- "fossilisation": "fossilization",
618
- "fossilise": "fossilize",
619
- "fossilised": "fossilized",
620
- "fossilises": "fossilizes",
621
- "fossilising": "fossilizing",
622
- "fraternisation": "fraternization",
623
- "fraternise": "fraternize",
624
- "fraternised": "fraternized",
625
- "fraternises": "fraternizes",
626
- "fraternising": "fraternizing",
627
- "fulfil": "fulfill",
628
- "fulfilment": "fulfillment",
629
- "fulfils": "fulfills",
630
- "funnelled": "funneled",
631
- "funnelling": "funneling",
632
- "gage": "gauge",
633
- "gaged": "gauged",
634
- "gages": "gauges",
635
- "gaging": "gauging",
636
- "galvanise": "galvanize",
637
- "galvanised": "galvanized",
638
- "galvanises": "galvanizes",
639
- "galvanising": "galvanizing",
640
- "gambolled": "gamboled",
641
- "gambolling": "gamboling",
642
- "gaol": "jail",
643
- "gaolbird": "jailbird",
644
- "gaolbirds": "jailbirds",
645
- "gaolbreak": "jailbreak",
646
- "gaolbreaks": "jailbreaks",
647
- "gaoled": "jailed",
648
- "gaoler": "jailer",
649
- "gaolers": "jailers",
650
- "gaoling": "jailing",
651
- "gaols": "jails",
652
- "gasses": "gases",
653
- "generalisation": "generalization",
654
- "generalisations": "generalizations",
655
- "generalise": "generalize",
656
- "generalised": "generalized",
657
- "generalises": "generalizes",
658
- "generalising": "generalizing",
659
- "ghettoise": "ghettoize",
660
- "ghettoised": "ghettoized",
661
- "ghettoises": "ghettoizes",
662
- "ghettoising": "ghettoizing",
663
- "gipsies": "gypsies",
664
- "glamor": "glamour",
665
- "glamorise": "glamorize",
666
- "glamorised": "glamorized",
667
- "glamorises": "glamorizes",
668
- "glamorising": "glamorizing",
669
- "globalisation": "globalization",
670
- "globalise": "globalize",
671
- "globalised": "globalized",
672
- "globalises": "globalizes",
673
- "globalising": "globalizing",
674
- "glueing": "gluing",
675
- "goitre": "goiter",
676
- "goitres": "goiters",
677
- "gonorrhoea": "gonorrhea",
678
- "gramme": "gram",
679
- "grammes": "grams",
680
- "gravelled": "graveled",
681
- "grey": "gray",
682
- "greyed": "grayed",
683
- "greying": "graying",
684
- "greyish": "grayish",
685
- "greyness": "grayness",
686
- "greys": "grays",
687
- "grovelled": "groveled",
688
- "grovelling": "groveling",
689
- "groyne": "groin",
690
- "groynes": "groins",
691
- "gruelling": "grueling",
692
- "gruellingly": "gruelingly",
693
- "gryphon": "griffin",
694
- "gryphons": "griffins",
695
- "gynaecological": "gynecological",
696
- "gynaecologist": "gynecologist",
697
- "gynaecologists": "gynecologists",
698
- "gynaecology": "gynecology",
699
- "haematological": "hematological",
700
- "haematologist": "hematologist",
701
- "haematologists": "hematologists",
702
- "haematology": "hematology",
703
- "haemoglobin": "hemoglobin",
704
- "haemophilia": "hemophilia",
705
- "haemophiliac": "hemophiliac",
706
- "haemophiliacs": "hemophiliacs",
707
- "haemorrhage": "hemorrhage",
708
- "haemorrhaged": "hemorrhaged",
709
- "haemorrhages": "hemorrhages",
710
- "haemorrhaging": "hemorrhaging",
711
- "haemorrhoids": "hemorrhoids",
712
- "harbour": "harbor",
713
- "harboured": "harbored",
714
- "harbouring": "harboring",
715
- "harbours": "harbors",
716
- "harmonisation": "harmonization",
717
- "harmonise": "harmonize",
718
- "harmonised": "harmonized",
719
- "harmonises": "harmonizes",
720
- "harmonising": "harmonizing",
721
- "homoeopath": "homeopath",
722
- "homoeopathic": "homeopathic",
723
- "homoeopaths": "homeopaths",
724
- "homoeopathy": "homeopathy",
725
- "homogenise": "homogenize",
726
- "homogenised": "homogenized",
727
- "homogenises": "homogenizes",
728
- "homogenising": "homogenizing",
729
- "honour": "honor",
730
- "honourable": "honorable",
731
- "honourably": "honorably",
732
- "honoured": "honored",
733
- "honouring": "honoring",
734
- "honours": "honors",
735
- "hospitalisation": "hospitalization",
736
- "hospitalise": "hospitalize",
737
- "hospitalised": "hospitalized",
738
- "hospitalises": "hospitalizes",
739
- "hospitalising": "hospitalizing",
740
- "humanise": "humanize",
741
- "humanised": "humanized",
742
- "humanises": "humanizes",
743
- "humanising": "humanizing",
744
- "humour": "humor",
745
- "humoured": "humored",
746
- "humouring": "humoring",
747
- "humourless": "humorless",
748
- "humours": "humors",
749
- "hybridise": "hybridize",
750
- "hybridised": "hybridized",
751
- "hybridises": "hybridizes",
752
- "hybridising": "hybridizing",
753
- "hypnotise": "hypnotize",
754
- "hypnotised": "hypnotized",
755
- "hypnotises": "hypnotizes",
756
- "hypnotising": "hypnotizing",
757
- "hypothesise": "hypothesize",
758
- "hypothesised": "hypothesized",
759
- "hypothesises": "hypothesizes",
760
- "hypothesising": "hypothesizing",
761
- "idealisation": "idealization",
762
- "idealise": "idealize",
763
- "idealised": "idealized",
764
- "idealises": "idealizes",
765
- "idealising": "idealizing",
766
- "idolise": "idolize",
767
- "idolised": "idolized",
768
- "idolises": "idolizes",
769
- "idolising": "idolizing",
770
- "immobilisation": "immobilization",
771
- "immobilise": "immobilize",
772
- "immobilised": "immobilized",
773
- "immobiliser": "immobilizer",
774
- "immobilisers": "immobilizers",
775
- "immobilises": "immobilizes",
776
- "immobilising": "immobilizing",
777
- "immortalise": "immortalize",
778
- "immortalised": "immortalized",
779
- "immortalises": "immortalizes",
780
- "immortalising": "immortalizing",
781
- "immunisation": "immunization",
782
- "immunise": "immunize",
783
- "immunised": "immunized",
784
- "immunises": "immunizes",
785
- "immunising": "immunizing",
786
- "impanelled": "impaneled",
787
- "impanelling": "impaneling",
788
- "imperilled": "imperiled",
789
- "imperilling": "imperiling",
790
- "individualise": "individualize",
791
- "individualised": "individualized",
792
- "individualises": "individualizes",
793
- "individualising": "individualizing",
794
- "industrialise": "industrialize",
795
- "industrialised": "industrialized",
796
- "industrialises": "industrializes",
797
- "industrialising": "industrializing",
798
- "inflexion": "inflection",
799
- "inflexions": "inflections",
800
- "initialise": "initialize",
801
- "initialised": "initialized",
802
- "initialises": "initializes",
803
- "initialising": "initializing",
804
- "initialled": "initialed",
805
- "initialling": "initialing",
806
- "instal": "install",
807
- "instalment": "installment",
808
- "instalments": "installments",
809
- "instals": "installs",
810
- "instil": "instill",
811
- "instils": "instills",
812
- "institutionalisation": "institutionalization",
813
- "institutionalise": "institutionalize",
814
- "institutionalised": "institutionalized",
815
- "institutionalises": "institutionalizes",
816
- "institutionalising": "institutionalizing",
817
- "intellectualise": "intellectualize",
818
- "intellectualised": "intellectualized",
819
- "intellectualises": "intellectualizes",
820
- "intellectualising": "intellectualizing",
821
- "internalisation": "internalization",
822
- "internalise": "internalize",
823
- "internalised": "internalized",
824
- "internalises": "internalizes",
825
- "internalising": "internalizing",
826
- "internationalisation": "internationalization",
827
- "internationalise": "internationalize",
828
- "internationalised": "internationalized",
829
- "internationalises": "internationalizes",
830
- "internationalising": "internationalizing",
831
- "ionisation": "ionization",
832
- "ionise": "ionize",
833
- "ionised": "ionized",
834
- "ioniser": "ionizer",
835
- "ionisers": "ionizers",
836
- "ionises": "ionizes",
837
- "ionising": "ionizing",
838
- "italicise": "italicize",
839
- "italicised": "italicized",
840
- "italicises": "italicizes",
841
- "italicising": "italicizing",
842
- "itemise": "itemize",
843
- "itemised": "itemized",
844
- "itemises": "itemizes",
845
- "itemising": "itemizing",
846
- "jeopardise": "jeopardize",
847
- "jeopardised": "jeopardized",
848
- "jeopardises": "jeopardizes",
849
- "jeopardising": "jeopardizing",
850
- "jewelled": "jeweled",
851
- "jeweller": "jeweler",
852
- "jewellers": "jewelers",
853
- "jewellery": "jewelry",
854
- "judgement": "judgment",
855
- "kilogramme": "kilogram",
856
- "kilogrammes": "kilograms",
857
- "kilometre": "kilometer",
858
- "kilometres": "kilometers",
859
- "labelled": "labeled",
860
- "labelling": "labeling",
861
- "labour": "labor",
862
- "laboured": "labored",
863
- "labourer": "laborer",
864
- "labourers": "laborers",
865
- "labouring": "laboring",
866
- "labours": "labors",
867
- "lacklustre": "lackluster",
868
- "legalisation": "legalization",
869
- "legalise": "legalize",
870
- "legalised": "legalized",
871
- "legalises": "legalizes",
872
- "legalising": "legalizing",
873
- "legitimise": "legitimize",
874
- "legitimised": "legitimized",
875
- "legitimises": "legitimizes",
876
- "legitimising": "legitimizing",
877
- "leukaemia": "leukemia",
878
- "levelled": "leveled",
879
- "leveller": "leveler",
880
- "levellers": "levelers",
881
- "levelling": "leveling",
882
- "libelled": "libeled",
883
- "libelling": "libeling",
884
- "libellous": "libelous",
885
- "liberalisation": "liberalization",
886
- "liberalise": "liberalize",
887
- "liberalised": "liberalized",
888
- "liberalises": "liberalizes",
889
- "liberalising": "liberalizing",
890
- "licence": "license",
891
- "licenced": "licensed",
892
- "licences": "licenses",
893
- "licencing": "licensing",
894
- "likeable": "likable",
895
- "lionisation": "lionization",
896
- "lionise": "lionize",
897
- "lionised": "lionized",
898
- "lionises": "lionizes",
899
- "lionising": "lionizing",
900
- "liquidise": "liquidize",
901
- "liquidised": "liquidized",
902
- "liquidiser": "liquidizer",
903
- "liquidisers": "liquidizers",
904
- "liquidises": "liquidizes",
905
- "liquidising": "liquidizing",
906
- "litre": "liter",
907
- "litres": "liters",
908
- "localise": "localize",
909
- "localised": "localized",
910
- "localises": "localizes",
911
- "localising": "localizing",
912
- "louvre": "louver",
913
- "louvred": "louvered",
914
- "louvres": "louvers",
915
- "lustre": "luster",
916
- "magnetise": "magnetize",
917
- "magnetised": "magnetized",
918
- "magnetises": "magnetizes",
919
- "magnetising": "magnetizing",
920
- "manoeuvrability": "maneuverability",
921
- "manoeuvrable": "maneuverable",
922
- "manoeuvre": "maneuver",
923
- "manoeuvred": "maneuvered",
924
- "manoeuvres": "maneuvers",
925
- "manoeuvring": "maneuvering",
926
- "manoeuvrings": "maneuverings",
927
- "marginalisation": "marginalization",
928
- "marginalise": "marginalize",
929
- "marginalised": "marginalized",
930
- "marginalises": "marginalizes",
931
- "marginalising": "marginalizing",
932
- "marshalled": "marshaled",
933
- "marshalling": "marshaling",
934
- "marvelled": "marveled",
935
- "marvelling": "marveling",
936
- "marvellous": "marvelous",
937
- "marvellously": "marvelously",
938
- "materialisation": "materialization",
939
- "materialise": "materialize",
940
- "materialised": "materialized",
941
- "materialises": "materializes",
942
- "materialising": "materializing",
943
- "maximisation": "maximization",
944
- "maximise": "maximize",
945
- "maximised": "maximized",
946
- "maximises": "maximizes",
947
- "maximising": "maximizing",
948
- "meagre": "meager",
949
- "mechanisation": "mechanization",
950
- "mechanise": "mechanize",
951
- "mechanised": "mechanized",
952
- "mechanises": "mechanizes",
953
- "mechanising": "mechanizing",
954
- "mediaeval": "medieval",
955
- "memorialise": "memorialize",
956
- "memorialised": "memorialized",
957
- "memorialises": "memorializes",
958
- "memorialising": "memorializing",
959
- "memorise": "memorize",
960
- "memorised": "memorized",
961
- "memorises": "memorizes",
962
- "memorising": "memorizing",
963
- "mesmerise": "mesmerize",
964
- "mesmerised": "mesmerized",
965
- "mesmerises": "mesmerizes",
966
- "mesmerising": "mesmerizing",
967
- "metabolise": "metabolize",
968
- "metabolised": "metabolized",
969
- "metabolises": "metabolizes",
970
- "metabolising": "metabolizing",
971
- "metre": "meter",
972
- "metres": "meters",
973
- "mhm": "hmm",
974
- "micrometre": "micrometer",
975
- "micrometres": "micrometers",
976
- "militarise": "militarize",
977
- "militarised": "militarized",
978
- "militarises": "militarizes",
979
- "militarising": "militarizing",
980
- "milligramme": "milligram",
981
- "milligrammes": "milligrams",
982
- "millilitre": "milliliter",
983
- "millilitres": "milliliters",
984
- "millimetre": "millimeter",
985
- "millimetres": "millimeters",
986
- "miniaturisation": "miniaturization",
987
- "miniaturise": "miniaturize",
988
- "miniaturised": "miniaturized",
989
- "miniaturises": "miniaturizes",
990
- "miniaturising": "miniaturizing",
991
- "minibusses": "minibuses",
992
- "minimise": "minimize",
993
- "minimised": "minimized",
994
- "minimises": "minimizes",
995
- "minimising": "minimizing",
996
- "misbehaviour": "misbehavior",
997
- "misdemeanour": "misdemeanor",
998
- "misdemeanours": "misdemeanors",
999
- "misspelt": "misspelled",
1000
- "mitre": "miter",
1001
- "mitres": "miters",
1002
- "mm": "hmm",
1003
- "mmm": "hmm",
1004
- "mobilisation": "mobilization",
1005
- "mobilise": "mobilize",
1006
- "mobilised": "mobilized",
1007
- "mobilises": "mobilizes",
1008
- "mobilising": "mobilizing",
1009
- "modelled": "modeled",
1010
- "modeller": "modeler",
1011
- "modellers": "modelers",
1012
- "modelling": "modeling",
1013
- "modernise": "modernize",
1014
- "modernised": "modernized",
1015
- "modernises": "modernizes",
1016
- "modernising": "modernizing",
1017
- "moisturise": "moisturize",
1018
- "moisturised": "moisturized",
1019
- "moisturiser": "moisturizer",
1020
- "moisturisers": "moisturizers",
1021
- "moisturises": "moisturizes",
1022
- "moisturising": "moisturizing",
1023
- "monologue": "monolog",
1024
- "monologues": "monologs",
1025
- "monopolisation": "monopolization",
1026
- "monopolise": "monopolize",
1027
- "monopolised": "monopolized",
1028
- "monopolises": "monopolizes",
1029
- "monopolising": "monopolizing",
1030
- "moralise": "moralize",
1031
- "moralised": "moralized",
1032
- "moralises": "moralizes",
1033
- "moralising": "moralizing",
1034
- "motorised": "motorized",
1035
- "mould": "mold",
1036
- "moulded": "molded",
1037
- "moulder": "molder",
1038
- "mouldered": "moldered",
1039
- "mouldering": "moldering",
1040
- "moulders": "molders",
1041
- "mouldier": "moldier",
1042
- "mouldiest": "moldiest",
1043
- "moulding": "molding",
1044
- "mouldings": "moldings",
1045
- "moulds": "molds",
1046
- "mouldy": "moldy",
1047
- "moult": "molt",
1048
- "moulted": "molted",
1049
- "moulting": "molting",
1050
- "moults": "molts",
1051
- "moustache": "mustache",
1052
- "moustached": "mustached",
1053
- "moustaches": "mustaches",
1054
- "moustachioed": "mustachioed",
1055
- "multicoloured": "multicolored",
1056
- "nationalisation": "nationalization",
1057
- "nationalisations": "nationalizations",
1058
- "nationalise": "nationalize",
1059
- "nationalised": "nationalized",
1060
- "nationalises": "nationalizes",
1061
- "nationalising": "nationalizing",
1062
- "naturalisation": "naturalization",
1063
- "naturalise": "naturalize",
1064
- "naturalised": "naturalized",
1065
- "naturalises": "naturalizes",
1066
- "naturalising": "naturalizing",
1067
- "neighbour": "neighbor",
1068
- "neighbourhood": "neighborhood",
1069
- "neighbourhoods": "neighborhoods",
1070
- "neighbouring": "neighboring",
1071
- "neighbourliness": "neighborliness",
1072
- "neighbourly": "neighborly",
1073
- "neighbours": "neighbors",
1074
- "neutralisation": "neutralization",
1075
- "neutralise": "neutralize",
1076
- "neutralised": "neutralized",
1077
- "neutralises": "neutralizes",
1078
- "neutralising": "neutralizing",
1079
- "normalisation": "normalization",
1080
- "normalise": "normalize",
1081
- "normalised": "normalized",
1082
- "normalises": "normalizes",
1083
- "normalising": "normalizing",
1084
- "odour": "odor",
1085
- "odourless": "odorless",
1086
- "odours": "odors",
1087
- "oesophagus": "esophagus",
1088
- "oesophaguses": "esophaguses",
1089
- "oestrogen": "estrogen",
1090
- "offence": "offense",
1091
- "offences": "offenses",
1092
- "omelette": "omelet",
1093
- "omelettes": "omelets",
1094
- "optimise": "optimize",
1095
- "optimised": "optimized",
1096
- "optimises": "optimizes",
1097
- "optimising": "optimizing",
1098
- "organisation": "organization",
1099
- "organisational": "organizational",
1100
- "organisations": "organizations",
1101
- "organise": "organize",
1102
- "organised": "organized",
1103
- "organiser": "organizer",
1104
- "organisers": "organizers",
1105
- "organises": "organizes",
1106
- "organising": "organizing",
1107
- "orthopaedic": "orthopedic",
1108
- "orthopaedics": "orthopedics",
1109
- "ostracise": "ostracize",
1110
- "ostracised": "ostracized",
1111
- "ostracises": "ostracizes",
1112
- "ostracising": "ostracizing",
1113
- "outmanoeuvre": "outmaneuver",
1114
- "outmanoeuvred": "outmaneuvered",
1115
- "outmanoeuvres": "outmaneuvers",
1116
- "outmanoeuvring": "outmaneuvering",
1117
- "overemphasise": "overemphasize",
1118
- "overemphasised": "overemphasized",
1119
- "overemphasises": "overemphasizes",
1120
- "overemphasising": "overemphasizing",
1121
- "oxidisation": "oxidization",
1122
- "oxidise": "oxidize",
1123
- "oxidised": "oxidized",
1124
- "oxidises": "oxidizes",
1125
- "oxidising": "oxidizing",
1126
- "paederast": "pederast",
1127
- "paederasts": "pederasts",
1128
- "paediatric": "pediatric",
1129
- "paediatrician": "pediatrician",
1130
- "paediatricians": "pediatricians",
1131
- "paediatrics": "pediatrics",
1132
- "paedophile": "pedophile",
1133
- "paedophiles": "pedophiles",
1134
- "paedophilia": "pedophilia",
1135
- "palaeolithic": "paleolithic",
1136
- "palaeontologist": "paleontologist",
1137
- "palaeontologists": "paleontologists",
1138
- "palaeontology": "paleontology",
1139
- "panelled": "paneled",
1140
- "panelling": "paneling",
1141
- "panellist": "panelist",
1142
- "panellists": "panelists",
1143
- "paralyse": "paralyze",
1144
- "paralysed": "paralyzed",
1145
- "paralyses": "paralyzes",
1146
- "paralysing": "paralyzing",
1147
- "parcelled": "parceled",
1148
- "parcelling": "parceling",
1149
- "parlour": "parlor",
1150
- "parlours": "parlors",
1151
- "particularise": "particularize",
1152
- "particularised": "particularized",
1153
- "particularises": "particularizes",
1154
- "particularising": "particularizing",
1155
- "passivisation": "passivization",
1156
- "passivise": "passivize",
1157
- "passivised": "passivized",
1158
- "passivises": "passivizes",
1159
- "passivising": "passivizing",
1160
- "pasteurisation": "pasteurization",
1161
- "pasteurise": "pasteurize",
1162
- "pasteurised": "pasteurized",
1163
- "pasteurises": "pasteurizes",
1164
- "pasteurising": "pasteurizing",
1165
- "patronise": "patronize",
1166
- "patronised": "patronized",
1167
- "patronises": "patronizes",
1168
- "patronising": "patronizing",
1169
- "patronisingly": "patronizingly",
1170
- "pedalled": "pedaled",
1171
- "pedalling": "pedaling",
1172
- "pedestrianisation": "pedestrianization",
1173
- "pedestrianise": "pedestrianize",
1174
- "pedestrianised": "pedestrianized",
1175
- "pedestrianises": "pedestrianizes",
1176
- "pedestrianising": "pedestrianizing",
1177
- "penalise": "penalize",
1178
- "penalised": "penalized",
1179
- "penalises": "penalizes",
1180
- "penalising": "penalizing",
1181
- "pencilled": "penciled",
1182
- "pencilling": "penciling",
1183
- "personalise": "personalize",
1184
- "personalised": "personalized",
1185
- "personalises": "personalizes",
1186
- "personalising": "personalizing",
1187
- "pharmacopoeia": "pharmacopeia",
1188
- "pharmacopoeias": "pharmacopeias",
1189
- "philosophise": "philosophize",
1190
- "philosophised": "philosophized",
1191
- "philosophises": "philosophizes",
1192
- "philosophising": "philosophizing",
1193
- "philtre": "filter",
1194
- "philtres": "filters",
1195
- "phoney": "phony",
1196
- "plagiarise": "plagiarize",
1197
- "plagiarised": "plagiarized",
1198
- "plagiarises": "plagiarizes",
1199
- "plagiarising": "plagiarizing",
1200
- "plough": "plow",
1201
- "ploughed": "plowed",
1202
- "ploughing": "plowing",
1203
- "ploughman": "plowman",
1204
- "ploughmen": "plowmen",
1205
- "ploughs": "plows",
1206
- "ploughshare": "plowshare",
1207
- "ploughshares": "plowshares",
1208
- "polarisation": "polarization",
1209
- "polarise": "polarize",
1210
- "polarised": "polarized",
1211
- "polarises": "polarizes",
1212
- "polarising": "polarizing",
1213
- "politicisation": "politicization",
1214
- "politicise": "politicize",
1215
- "politicised": "politicized",
1216
- "politicises": "politicizes",
1217
- "politicising": "politicizing",
1218
- "popularisation": "popularization",
1219
- "popularise": "popularize",
1220
- "popularised": "popularized",
1221
- "popularises": "popularizes",
1222
- "popularising": "popularizing",
1223
- "pouffe": "pouf",
1224
- "pouffes": "poufs",
1225
- "practise": "practice",
1226
- "practised": "practiced",
1227
- "practises": "practices",
1228
- "practising": "practicing",
1229
- "praesidium": "presidium",
1230
- "praesidiums": "presidiums",
1231
- "pressurisation": "pressurization",
1232
- "pressurise": "pressurize",
1233
- "pressurised": "pressurized",
1234
- "pressurises": "pressurizes",
1235
- "pressurising": "pressurizing",
1236
- "pretence": "pretense",
1237
- "pretences": "pretenses",
1238
- "primaeval": "primeval",
1239
- "prioritisation": "prioritization",
1240
- "prioritise": "prioritize",
1241
- "prioritised": "prioritized",
1242
- "prioritises": "prioritizes",
1243
- "prioritising": "prioritizing",
1244
- "privatisation": "privatization",
1245
- "privatisations": "privatizations",
1246
- "privatise": "privatize",
1247
- "privatised": "privatized",
1248
- "privatises": "privatizes",
1249
- "privatising": "privatizing",
1250
- "professionalisation": "professionalization",
1251
- "professionalise": "professionalize",
1252
- "professionalised": "professionalized",
1253
- "professionalises": "professionalizes",
1254
- "professionalising": "professionalizing",
1255
- "programme": "program",
1256
- "programmes": "programs",
1257
- "prologue": "prolog",
1258
- "prologues": "prologs",
1259
- "propagandise": "propagandize",
1260
- "propagandised": "propagandized",
1261
- "propagandises": "propagandizes",
1262
- "propagandising": "propagandizing",
1263
- "proselytise": "proselytize",
1264
- "proselytised": "proselytized",
1265
- "proselytiser": "proselytizer",
1266
- "proselytisers": "proselytizers",
1267
- "proselytises": "proselytizes",
1268
- "proselytising": "proselytizing",
1269
- "psychoanalyse": "psychoanalyze",
1270
- "psychoanalysed": "psychoanalyzed",
1271
- "psychoanalyses": "psychoanalyzes",
1272
- "psychoanalysing": "psychoanalyzing",
1273
- "publicise": "publicize",
1274
- "publicised": "publicized",
1275
- "publicises": "publicizes",
1276
- "publicising": "publicizing",
1277
- "pulverisation": "pulverization",
1278
- "pulverise": "pulverize",
1279
- "pulverised": "pulverized",
1280
- "pulverises": "pulverizes",
1281
- "pulverising": "pulverizing",
1282
- "pummelled": "pummel",
1283
- "pummelling": "pummeled",
1284
- "pyjama": "pajama",
1285
- "pyjamas": "pajamas",
1286
- "pzazz": "pizzazz",
1287
- "quarrelled": "quarreled",
1288
- "quarrelling": "quarreling",
1289
- "radicalise": "radicalize",
1290
- "radicalised": "radicalized",
1291
- "radicalises": "radicalizes",
1292
- "radicalising": "radicalizing",
1293
- "rancour": "rancor",
1294
- "randomise": "randomize",
1295
- "randomised": "randomized",
1296
- "randomises": "randomizes",
1297
- "randomising": "randomizing",
1298
- "rationalisation": "rationalization",
1299
- "rationalisations": "rationalizations",
1300
- "rationalise": "rationalize",
1301
- "rationalised": "rationalized",
1302
- "rationalises": "rationalizes",
1303
- "rationalising": "rationalizing",
1304
- "ravelled": "raveled",
1305
- "ravelling": "raveling",
1306
- "realisable": "realizable",
1307
- "realisation": "realization",
1308
- "realisations": "realizations",
1309
- "realise": "realize",
1310
- "realised": "realized",
1311
- "realises": "realizes",
1312
- "realising": "realizing",
1313
- "recognisable": "recognizable",
1314
- "recognisably": "recognizably",
1315
- "recognisance": "recognizance",
1316
- "recognise": "recognize",
1317
- "recognised": "recognized",
1318
- "recognises": "recognizes",
1319
- "recognising": "recognizing",
1320
- "reconnoitre": "reconnoiter",
1321
- "reconnoitred": "reconnoitered",
1322
- "reconnoitres": "reconnoiters",
1323
- "reconnoitring": "reconnoitering",
1324
- "refuelled": "refueled",
1325
- "refuelling": "refueling",
1326
- "regularisation": "regularization",
1327
- "regularise": "regularize",
1328
- "regularised": "regularized",
1329
- "regularises": "regularizes",
1330
- "regularising": "regularizing",
1331
- "remodelled": "remodeled",
1332
- "remodelling": "remodeling",
1333
- "remould": "remold",
1334
- "remoulded": "remolded",
1335
- "remoulding": "remolding",
1336
- "remoulds": "remolds",
1337
- "reorganisation": "reorganization",
1338
- "reorganisations": "reorganizations",
1339
- "reorganise": "reorganize",
1340
- "reorganised": "reorganized",
1341
- "reorganises": "reorganizes",
1342
- "reorganising": "reorganizing",
1343
- "revelled": "reveled",
1344
- "reveller": "reveler",
1345
- "revellers": "revelers",
1346
- "revelling": "reveling",
1347
- "revitalise": "revitalize",
1348
- "revitalised": "revitalized",
1349
- "revitalises": "revitalizes",
1350
- "revitalising": "revitalizing",
1351
- "revolutionise": "revolutionize",
1352
- "revolutionised": "revolutionized",
1353
- "revolutionises": "revolutionizes",
1354
- "revolutionising": "revolutionizing",
1355
- "rhapsodise": "rhapsodize",
1356
- "rhapsodised": "rhapsodized",
1357
- "rhapsodises": "rhapsodizes",
1358
- "rhapsodising": "rhapsodizing",
1359
- "rigour": "rigor",
1360
- "rigours": "rigors",
1361
- "ritualised": "ritualized",
1362
- "rivalled": "rivaled",
1363
- "rivalling": "rivaling",
1364
- "romanticise": "romanticize",
1365
- "romanticised": "romanticized",
1366
- "romanticises": "romanticizes",
1367
- "romanticising": "romanticizing",
1368
- "rumour": "rumor",
1369
- "rumoured": "rumored",
1370
- "rumours": "rumors",
1371
- "sabre": "saber",
1372
- "sabres": "sabers",
1373
- "saltpetre": "saltpeter",
1374
- "sanitise": "sanitize",
1375
- "sanitised": "sanitized",
1376
- "sanitises": "sanitizes",
1377
- "sanitising": "sanitizing",
1378
- "satirise": "satirize",
1379
- "satirised": "satirized",
1380
- "satirises": "satirizes",
1381
- "satirising": "satirizing",
1382
- "saviour": "savior",
1383
- "saviours": "saviors",
1384
- "savour": "savor",
1385
- "savoured": "savored",
1386
- "savouries": "savories",
1387
- "savouring": "savoring",
1388
- "savours": "savors",
1389
- "savoury": "savory",
1390
- "scandalise": "scandalize",
1391
- "scandalised": "scandalized",
1392
- "scandalises": "scandalizes",
1393
- "scandalising": "scandalizing",
1394
- "sceptic": "skeptic",
1395
- "sceptical": "skeptical",
1396
- "sceptically": "skeptically",
1397
- "scepticism": "skepticism",
1398
- "sceptics": "skeptics",
1399
- "sceptre": "scepter",
1400
- "sceptres": "scepters",
1401
- "scrutinise": "scrutinize",
1402
- "scrutinised": "scrutinized",
1403
- "scrutinises": "scrutinizes",
1404
- "scrutinising": "scrutinizing",
1405
- "secularisation": "secularization",
1406
- "secularise": "secularize",
1407
- "secularised": "secularized",
1408
- "secularises": "secularizes",
1409
- "secularising": "secularizing",
1410
- "sensationalise": "sensationalize",
1411
- "sensationalised": "sensationalized",
1412
- "sensationalises": "sensationalizes",
1413
- "sensationalising": "sensationalizing",
1414
- "sensitise": "sensitize",
1415
- "sensitised": "sensitized",
1416
- "sensitises": "sensitizes",
1417
- "sensitising": "sensitizing",
1418
- "sentimentalise": "sentimentalize",
1419
- "sentimentalised": "sentimentalized",
1420
- "sentimentalises": "sentimentalizes",
1421
- "sentimentalising": "sentimentalizing",
1422
- "sepulchre": "sepulcher",
1423
- "sepulchres": "sepulchers",
1424
- "serialisation": "serialization",
1425
- "serialisations": "serializations",
1426
- "serialise": "serialize",
1427
- "serialised": "serialized",
1428
- "serialises": "serializes",
1429
- "serialising": "serializing",
1430
- "sermonise": "sermonize",
1431
- "sermonised": "sermonized",
1432
- "sermonises": "sermonizes",
1433
- "sermonising": "sermonizing",
1434
- "sheikh": "sheik",
1435
- "shovelled": "shoveled",
1436
- "shovelling": "shoveling",
1437
- "shrivelled": "shriveled",
1438
- "shrivelling": "shriveling",
1439
- "signalise": "signalize",
1440
- "signalised": "signalized",
1441
- "signalises": "signalizes",
1442
- "signalising": "signalizing",
1443
- "signalled": "signaled",
1444
- "signalling": "signaling",
1445
- "smoulder": "smolder",
1446
- "smouldered": "smoldered",
1447
- "smouldering": "smoldering",
1448
- "smoulders": "smolders",
1449
- "snivelled": "sniveled",
1450
- "snivelling": "sniveling",
1451
- "snorkelled": "snorkeled",
1452
- "snorkelling": "snorkeling",
1453
- "snowplough": "snowplow",
1454
- "snowploughs": "snowplow",
1455
- "socialisation": "socialization",
1456
- "socialise": "socialize",
1457
- "socialised": "socialized",
1458
- "socialises": "socializes",
1459
- "socialising": "socializing",
1460
- "sodomise": "sodomize",
1461
- "sodomised": "sodomized",
1462
- "sodomises": "sodomizes",
1463
- "sodomising": "sodomizing",
1464
- "solemnise": "solemnize",
1465
- "solemnised": "solemnized",
1466
- "solemnises": "solemnizes",
1467
- "solemnising": "solemnizing",
1468
- "sombre": "somber",
1469
- "specialisation": "specialization",
1470
- "specialisations": "specializations",
1471
- "specialise": "specialize",
1472
- "specialised": "specialized",
1473
- "specialises": "specializes",
1474
- "specialising": "specializing",
1475
- "spectre": "specter",
1476
- "spectres": "specters",
1477
- "spiralled": "spiraled",
1478
- "spiralling": "spiraling",
1479
- "splendour": "splendor",
1480
- "splendours": "splendors",
1481
- "squirrelled": "squirreled",
1482
- "squirrelling": "squirreling",
1483
- "stabilisation": "stabilization",
1484
- "stabilise": "stabilize",
1485
- "stabilised": "stabilized",
1486
- "stabiliser": "stabilizer",
1487
- "stabilisers": "stabilizers",
1488
- "stabilises": "stabilizes",
1489
- "stabilising": "stabilizing",
1490
- "standardisation": "standardization",
1491
- "standardise": "standardize",
1492
- "standardised": "standardized",
1493
- "standardises": "standardizes",
1494
- "standardising": "standardizing",
1495
- "stencilled": "stenciled",
1496
- "stencilling": "stenciling",
1497
- "sterilisation": "sterilization",
1498
- "sterilisations": "sterilizations",
1499
- "sterilise": "sterilize",
1500
- "sterilised": "sterilized",
1501
- "steriliser": "sterilizer",
1502
- "sterilisers": "sterilizers",
1503
- "sterilises": "sterilizes",
1504
- "sterilising": "sterilizing",
1505
- "stigmatisation": "stigmatization",
1506
- "stigmatise": "stigmatize",
1507
- "stigmatised": "stigmatized",
1508
- "stigmatises": "stigmatizes",
1509
- "stigmatising": "stigmatizing",
1510
- "storey": "story",
1511
- "storeys": "stories",
1512
- "subsidisation": "subsidization",
1513
- "subsidise": "subsidize",
1514
- "subsidised": "subsidized",
1515
- "subsidiser": "subsidizer",
1516
- "subsidisers": "subsidizers",
1517
- "subsidises": "subsidizes",
1518
- "subsidising": "subsidizing",
1519
- "succour": "succor",
1520
- "succoured": "succored",
1521
- "succouring": "succoring",
1522
- "succours": "succors",
1523
- "sulphate": "sulfate",
1524
- "sulphates": "sulfates",
1525
- "sulphide": "sulfide",
1526
- "sulphides": "sulfides",
1527
- "sulphur": "sulfur",
1528
- "sulphurous": "sulfurous",
1529
- "summarise": "summarize",
1530
- "summarised": "summarized",
1531
- "summarises": "summarizes",
1532
- "summarising": "summarizing",
1533
- "swivelled": "swiveled",
1534
- "swivelling": "swiveling",
1535
- "symbolise": "symbolize",
1536
- "symbolised": "symbolized",
1537
- "symbolises": "symbolizes",
1538
- "symbolising": "symbolizing",
1539
- "sympathise": "sympathize",
1540
- "sympathised": "sympathized",
1541
- "sympathiser": "sympathizer",
1542
- "sympathisers": "sympathizers",
1543
- "sympathises": "sympathizes",
1544
- "sympathising": "sympathizing",
1545
- "synchronisation": "synchronization",
1546
- "synchronise": "synchronize",
1547
- "synchronised": "synchronized",
1548
- "synchronises": "synchronizes",
1549
- "synchronising": "synchronizing",
1550
- "synthesise": "synthesize",
1551
- "synthesised": "synthesized",
1552
- "synthesiser": "synthesizer",
1553
- "synthesisers": "synthesizers",
1554
- "synthesises": "synthesizes",
1555
- "synthesising": "synthesizing",
1556
- "syphon": "siphon",
1557
- "syphoned": "siphoned",
1558
- "syphoning": "siphoning",
1559
- "syphons": "siphons",
1560
- "systematisation": "systematization",
1561
- "systematise": "systematize",
1562
- "systematised": "systematized",
1563
- "systematises": "systematizes",
1564
- "systematising": "systematizing",
1565
- "tantalise": "tantalize",
1566
- "tantalised": "tantalized",
1567
- "tantalises": "tantalizes",
1568
- "tantalising": "tantalizing",
1569
- "tantalisingly": "tantalizingly",
1570
- "tasselled": "tasseled",
1571
- "technicolour": "technicolor",
1572
- "temporise": "temporize",
1573
- "temporised": "temporized",
1574
- "temporises": "temporizes",
1575
- "temporising": "temporizing",
1576
- "tenderise": "tenderize",
1577
- "tenderised": "tenderized",
1578
- "tenderises": "tenderizes",
1579
- "tenderising": "tenderizing",
1580
- "terrorise": "terrorize",
1581
- "terrorised": "terrorized",
1582
- "terrorises": "terrorizes",
1583
- "terrorising": "terrorizing",
1584
- "theatre": "theater",
1585
- "theatregoer": "theatergoer",
1586
- "theatregoers": "theatergoers",
1587
- "theatres": "theaters",
1588
- "theorise": "theorize",
1589
- "theorised": "theorized",
1590
- "theorises": "theorizes",
1591
- "theorising": "theorizing",
1592
- "tonne": "ton",
1593
- "tonnes": "tons",
1594
- "towelled": "toweled",
1595
- "towelling": "toweling",
1596
- "toxaemia": "toxemia",
1597
- "tranquillise": "tranquilize",
1598
- "tranquillised": "tranquilized",
1599
- "tranquilliser": "tranquilizer",
1600
- "tranquillisers": "tranquilizers",
1601
- "tranquillises": "tranquilizes",
1602
- "tranquillising": "tranquilizing",
1603
- "tranquillity": "tranquility",
1604
- "tranquillize": "tranquilize",
1605
- "tranquillized": "tranquilized",
1606
- "tranquillizer": "tranquilizer",
1607
- "tranquillizers": "tranquilizers",
1608
- "tranquillizes": "tranquilizes",
1609
- "tranquillizing": "tranquilizing",
1610
- "tranquilly": "tranquility",
1611
- "transistorised": "transistorized",
1612
- "traumatise": "traumatize",
1613
- "traumatised": "traumatized",
1614
- "traumatises": "traumatizes",
1615
- "traumatising": "traumatizing",
1616
- "travelled": "traveled",
1617
- "traveller": "traveler",
1618
- "travellers": "travelers",
1619
- "travelling": "traveling",
1620
- "travelog": "travelogue",
1621
- "travelogs": "travelogues",
1622
- "trialled": "trialed",
1623
- "trialling": "trialing",
1624
- "tricolour": "tricolor",
1625
- "tricolours": "tricolors",
1626
- "trivialise": "trivialize",
1627
- "trivialised": "trivialized",
1628
- "trivialises": "trivializes",
1629
- "trivialising": "trivializing",
1630
- "tumour": "tumor",
1631
- "tumours": "tumors",
1632
- "tunnelled": "tunneled",
1633
- "tunnelling": "tunneling",
1634
- "tyrannise": "tyrannize",
1635
- "tyrannised": "tyrannized",
1636
- "tyrannises": "tyrannizes",
1637
- "tyrannising": "tyrannizing",
1638
- "tyre": "tire",
1639
- "tyres": "tires",
1640
- "unauthorised": "unauthorized",
1641
- "uncivilised": "uncivilized",
1642
- "underutilised": "underutilized",
1643
- "unequalled": "unequaled",
1644
- "unfavourable": "unfavorable",
1645
- "unfavourably": "unfavorably",
1646
- "unionisation": "unionization",
1647
- "unionise": "unionize",
1648
- "unionised": "unionized",
1649
- "unionises": "unionizes",
1650
- "unionising": "unionizing",
1651
- "unorganised": "unorganized",
1652
- "unravelled": "unraveled",
1653
- "unravelling": "unraveling",
1654
- "unrecognisable": "unrecognizable",
1655
- "unrecognised": "unrecognized",
1656
- "unrivalled": "unrivaled",
1657
- "unsavoury": "unsavory",
1658
- "untrammelled": "untrammeled",
1659
- "urbanisation": "urbanization",
1660
- "urbanise": "urbanize",
1661
- "urbanised": "urbanized",
1662
- "urbanises": "urbanizes",
1663
- "urbanising": "urbanizing",
1664
- "utilisable": "utilizable",
1665
- "utilisation": "utilization",
1666
- "utilise": "utilize",
1667
- "utilised": "utilized",
1668
- "utilises": "utilizes",
1669
- "utilising": "utilizing",
1670
- "valour": "valor",
1671
- "vandalise": "vandalize",
1672
- "vandalised": "vandalized",
1673
- "vandalises": "vandalizes",
1674
- "vandalising": "vandalizing",
1675
- "vaporisation": "vaporization",
1676
- "vaporise": "vaporize",
1677
- "vaporised": "vaporized",
1678
- "vaporises": "vaporizes",
1679
- "vaporising": "vaporizing",
1680
- "vapour": "vapor",
1681
- "vapours": "vapors",
1682
- "verbalise": "verbalize",
1683
- "verbalised": "verbalized",
1684
- "verbalises": "verbalizes",
1685
- "verbalising": "verbalizing",
1686
- "victimisation": "victimization",
1687
- "victimise": "victimize",
1688
- "victimised": "victimized",
1689
- "victimises": "victimizes",
1690
- "victimising": "victimizing",
1691
- "videodisc": "videodisk",
1692
- "videodiscs": "videodisks",
1693
- "vigour": "vigor",
1694
- "visualisation": "visualization",
1695
- "visualisations": "visualizations",
1696
- "visualise": "visualize",
1697
- "visualised": "visualized",
1698
- "visualises": "visualizes",
1699
- "visualising": "visualizing",
1700
- "vocalisation": "vocalization",
1701
- "vocalisations": "vocalizations",
1702
- "vocalise": "vocalize",
1703
- "vocalised": "vocalized",
1704
- "vocalises": "vocalizes",
1705
- "vocalising": "vocalizing",
1706
- "vulcanised": "vulcanized",
1707
- "vulgarisation": "vulgarization",
1708
- "vulgarise": "vulgarize",
1709
- "vulgarised": "vulgarized",
1710
- "vulgarises": "vulgarizes",
1711
- "vulgarising": "vulgarizing",
1712
- "waggon": "wagon",
1713
- "waggons": "wagons",
1714
- "watercolour": "watercolor",
1715
- "watercolours": "watercolors",
1716
- "weaselled": "weaseled",
1717
- "weaselling": "weaseling",
1718
- "westernisation": "westernization",
1719
- "westernise": "westernize",
1720
- "westernised": "westernized",
1721
- "westernises": "westernizes",
1722
- "westernising": "westernizing",
1723
- "womanise": "womanize",
1724
- "womanised": "womanized",
1725
- "womaniser": "womanizer",
1726
- "womanisers": "womanizers",
1727
- "womanises": "womanizes",
1728
- "womanising": "womanizing",
1729
- "woollen": "woolen",
1730
- "woollens": "woolens",
1731
- "woollies": "woolies",
1732
- "woolly": "wooly",
1733
- "worshipped": "worshiped",
1734
- "worshipper": "worshiper",
1735
- "worshipping": "worshiping",
1736
- "yodelled": "yodeled",
1737
- "yodelling": "yodeling",
1738
- "yoghourt": "yogurt",
1739
- "yoghourts": "yogurts",
1740
- "yoghurt": "yogurt",
1741
- "yoghurts": "yogurts"
1742
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SALMONN_PATHS/whisper-large-v2/preprocessor_config.json DELETED
The diff for this file is too large to render. See raw diff
 
SALMONN_PATHS/whisper-large-v2/pytorch_model.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:c3b2988d9bda8155463311709196fec1a4cc4c74dac73db1be1258017d5f2fa6
3
- size 6173629930
 
 
 
 
SALMONN_PATHS/whisper-large-v2/special_tokens_map.json DELETED
@@ -1,139 +0,0 @@
1
- {
2
- "additional_special_tokens": [
3
- "<|endoftext|>",
4
- "<|startoftranscript|>",
5
- "<|en|>",
6
- "<|zh|>",
7
- "<|de|>",
8
- "<|es|>",
9
- "<|ru|>",
10
- "<|ko|>",
11
- "<|fr|>",
12
- "<|ja|>",
13
- "<|pt|>",
14
- "<|tr|>",
15
- "<|pl|>",
16
- "<|ca|>",
17
- "<|nl|>",
18
- "<|ar|>",
19
- "<|sv|>",
20
- "<|it|>",
21
- "<|id|>",
22
- "<|hi|>",
23
- "<|fi|>",
24
- "<|vi|>",
25
- "<|he|>",
26
- "<|uk|>",
27
- "<|el|>",
28
- "<|ms|>",
29
- "<|cs|>",
30
- "<|ro|>",
31
- "<|da|>",
32
- "<|hu|>",
33
- "<|ta|>",
34
- "<|no|>",
35
- "<|th|>",
36
- "<|ur|>",
37
- "<|hr|>",
38
- "<|bg|>",
39
- "<|lt|>",
40
- "<|la|>",
41
- "<|mi|>",
42
- "<|ml|>",
43
- "<|cy|>",
44
- "<|sk|>",
45
- "<|te|>",
46
- "<|fa|>",
47
- "<|lv|>",
48
- "<|bn|>",
49
- "<|sr|>",
50
- "<|az|>",
51
- "<|sl|>",
52
- "<|kn|>",
53
- "<|et|>",
54
- "<|mk|>",
55
- "<|br|>",
56
- "<|eu|>",
57
- "<|is|>",
58
- "<|hy|>",
59
- "<|ne|>",
60
- "<|mn|>",
61
- "<|bs|>",
62
- "<|kk|>",
63
- "<|sq|>",
64
- "<|sw|>",
65
- "<|gl|>",
66
- "<|mr|>",
67
- "<|pa|>",
68
- "<|si|>",
69
- "<|km|>",
70
- "<|sn|>",
71
- "<|yo|>",
72
- "<|so|>",
73
- "<|af|>",
74
- "<|oc|>",
75
- "<|ka|>",
76
- "<|be|>",
77
- "<|tg|>",
78
- "<|sd|>",
79
- "<|gu|>",
80
- "<|am|>",
81
- "<|yi|>",
82
- "<|lo|>",
83
- "<|uz|>",
84
- "<|fo|>",
85
- "<|ht|>",
86
- "<|ps|>",
87
- "<|tk|>",
88
- "<|nn|>",
89
- "<|mt|>",
90
- "<|sa|>",
91
- "<|lb|>",
92
- "<|my|>",
93
- "<|bo|>",
94
- "<|tl|>",
95
- "<|mg|>",
96
- "<|as|>",
97
- "<|tt|>",
98
- "<|haw|>",
99
- "<|ln|>",
100
- "<|ha|>",
101
- "<|ba|>",
102
- "<|jw|>",
103
- "<|su|>",
104
- "<|translate|>",
105
- "<|transcribe|>",
106
- "<|startoflm|>",
107
- "<|startofprev|>",
108
- "<|nocaptions|>",
109
- "<|notimestamps|>"
110
- ],
111
- "bos_token": {
112
- "content": "<|endoftext|>",
113
- "lstrip": false,
114
- "normalized": false,
115
- "rstrip": false,
116
- "single_word": false
117
- },
118
- "eos_token": {
119
- "content": "<|endoftext|>",
120
- "lstrip": false,
121
- "normalized": false,
122
- "rstrip": false,
123
- "single_word": false
124
- },
125
- "pad_token": {
126
- "content": "<|endoftext|>",
127
- "lstrip": false,
128
- "normalized": false,
129
- "rstrip": false,
130
- "single_word": false
131
- },
132
- "unk_token": {
133
- "content": "<|endoftext|>",
134
- "lstrip": false,
135
- "normalized": false,
136
- "rstrip": false,
137
- "single_word": false
138
- }
139
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SALMONN_PATHS/whisper-large-v2/tf_model.h5 DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:489f5f36ba6e1959913bb77b30baf85e8b791e1e585dec7d65a2e217bfb8be47
3
- size 6174574896
 
 
 
 
SALMONN_PATHS/whisper-large-v2/tokenizer.json DELETED
The diff for this file is too large to render. See raw diff
 
SALMONN_PATHS/whisper-large-v2/tokenizer_config.json DELETED
The diff for this file is too large to render. See raw diff
 
SALMONN_PATHS/whisper-large-v2/vocab.json DELETED
The diff for this file is too large to render. See raw diff
 
app.py CHANGED
@@ -28,8 +28,17 @@ from transformers import (
28
  WhisperForConditionalGeneration,
29
  )
30
  from transformers.generation import GenerationConfig
 
 
 
 
 
 
 
 
 
31
 
32
- from models.salmonn import SALMONN
33
 
34
  DB_PATH = "user_study.json"
35
  DB_DATASET_ID = "WillHeld/DiVAVotes"
@@ -92,42 +101,41 @@ qwen_model.generation_config = GenerationConfig.from_pretrained(
92
  # beats_path="./SALMONN_PATHS/BEATs_iter3_plus_AS2M_finetuned_on_AS2M_cpt2.pt",
93
  # vicuna_path="./SALMONN_PATHS/vicuna-13b-v1.1",
94
  # low_resource=False,
95
- # device="cuda:0",
96
  # )
97
  # salmonn_tokenizer = salmonn_model.llama_tokenizer
98
 
99
 
100
- diva = AutoModel.from_pretrained("WillHeld/DiVA-llama-3-v0-8b", trust_remote_code=True)
101
-
102
-
103
- @spaces.GPU
104
- @torch.no_grad
105
- def salmonn_fwd(audio_input, prompt, do_sample=False, temperature=0.001):
106
- if audio_input == None:
107
- return ""
108
- sr, y = audio_input
109
- y = y.astype(np.float32)
110
- y /= np.max(np.abs(y))
111
- a = resampler.decode_example(
112
- resampler.encode_example({"array": y, "sampling_rate": sr})
113
- )
114
- sf.write("tmp.wav", a["array"], a["sampling_rate"], format="wav")
115
- streamer = TextIteratorStreamer(salmonn_tokenizer)
116
- with torch.cuda.amp.autocast(dtype=torch.float16):
117
- llm_message = salmonn_model.generate(
118
- wav_path="tmp.wav",
119
- prompt=prompt,
120
- do_sample=False,
121
- top_p=1.0,
122
- temperature=0.0,
123
- device="cuda:0",
124
- streamer=streamer,
125
- )
126
-
127
- response = ""
128
- for new_tokens in streamer:
129
- response += new_tokens
130
- yield response.replace("</s>", "")
131
 
132
 
133
  @spaces.GPU
@@ -206,15 +214,15 @@ def transcribe(audio_input, text_prompt, state, model_order):
206
  )
207
  yield (v_resp, s_resp, q_resp)
208
 
209
- def gen_from_salmonn():
210
- salmonn_resp = salmonn_fwd(audio_input, text_prompt)
211
- for resp in salmonn_resp:
212
- s_resp = gr.Textbox(
213
- value=resp,
214
- visible=True,
215
- label=model_names[1] if not anonymous else f"Model {order}",
216
- )
217
- yield (v_resp, s_resp, q_resp)
218
 
219
  def gen_from_qwen():
220
  qwen_resp = qwen_audio(audio_input, text_prompt)
@@ -236,16 +244,16 @@ def transcribe(audio_input, text_prompt, state, model_order):
236
  order = -1
237
  resp_generators = [
238
  resp_generators[model_order[0]],
 
239
  resp_generators[model_order[1]],
240
- resp_generators[model_order[2]],
241
  ]
242
  for generator in [initial_responses, *resp_generators]:
243
  order += 1
244
  for resps in generator:
245
  v_resp, s_resp, q_resp = resps
246
  resp_1 = resps[model_order[0]]
247
- resp_2 = resps[model_order[1]]
248
- resp_3 = resps[model_order[2]]
249
  spinner = spinners[spinner_id]
250
  spinner_id = (spinner_id + 1) % 4
251
  yield (
@@ -365,7 +373,7 @@ model_names = ["Llama 3 DiVA", "SALMONN", "Qwen Audio"]
365
  model_shorthand = ["via", "salmonn", "qwen"]
366
  with gr.Blocks(theme=theme) as demo:
367
  state = gr.State(0)
368
- model_order = gr.State([0, 1, 2])
369
  with gr.Row():
370
  audio_input = gr.Audio(
371
  sources=["microphone"], streaming=False, label="Audio Input"
 
28
  WhisperForConditionalGeneration,
29
  )
30
  from transformers.generation import GenerationConfig
31
+ import spaces
32
+
33
+ # Set an environment variable
34
+ HF_TOKEN = os.environ.get("HF_TOKEN", None)
35
+
36
+ model_id = "meta-llama/Meta-Llama-3-8B"
37
+ # Load the tokenizer and model
38
+ AutoTokenizer.from_pretrained(model_id)
39
+ AutoModelForCausalLM.from_pretrained(model_id)
40
 
41
+ #from models.salmonn import SALMONN
42
 
43
  DB_PATH = "user_study.json"
44
  DB_DATASET_ID = "WillHeld/DiVAVotes"
 
101
  # beats_path="./SALMONN_PATHS/BEATs_iter3_plus_AS2M_finetuned_on_AS2M_cpt2.pt",
102
  # vicuna_path="./SALMONN_PATHS/vicuna-13b-v1.1",
103
  # low_resource=False,
104
+ # device="cuda",
105
  # )
106
  # salmonn_tokenizer = salmonn_model.llama_tokenizer
107
 
108
 
109
+ diva = AutoModel.from_pretrained("WillHeld/DiVA-llama-3-v0-8b", trust_remote_code=True, speech_encoder_device="cuda")
110
+
111
+ # @spaces.GPU
112
+ # @torch.no_grad
113
+ # def salmonn_fwd(audio_input, prompt, do_sample=False, temperature=0.001):
114
+ # if audio_input == None:
115
+ # return ""
116
+ # sr, y = audio_input
117
+ # y = y.astype(np.float32)
118
+ # y /= np.max(np.abs(y))
119
+ # a = resampler.decode_example(
120
+ # resampler.encode_example({"array": y, "sampling_rate": sr})
121
+ # )
122
+ # sf.write("tmp.wav", a["array"], a["sampling_rate"], format="wav")
123
+ # streamer = TextIteratorStreamer(salmonn_tokenizer)
124
+ # with torch.cuda.amp.autocast(dtype=torch.float16):
125
+ # llm_message = salmonn_model.generate(
126
+ # wav_path="tmp.wav",
127
+ # prompt=prompt,
128
+ # do_sample=False,
129
+ # top_p=1.0,
130
+ # temperature=0.0,
131
+ # device="cuda:0",
132
+ # streamer=streamer,
133
+ # )
134
+
135
+ # response = ""
136
+ # for new_tokens in streamer:
137
+ # response += new_tokens
138
+ # yield response.replace("</s>", "")
 
139
 
140
 
141
  @spaces.GPU
 
214
  )
215
  yield (v_resp, s_resp, q_resp)
216
 
217
+ # def gen_from_salmonn():
218
+ # salmonn_resp = salmonn_fwd(audio_input, text_prompt)
219
+ # for resp in salmonn_resp:
220
+ # s_resp = gr.Textbox(
221
+ # value=resp,
222
+ # visible=True,
223
+ # label=model_names[1] if not anonymous else f"Model {order}",
224
+ # )
225
+ # yield (v_resp, s_resp, q_resp)
226
 
227
  def gen_from_qwen():
228
  qwen_resp = qwen_audio(audio_input, text_prompt)
 
244
  order = -1
245
  resp_generators = [
246
  resp_generators[model_order[0]],
247
+ #resp_generators[model_order[1]],
248
  resp_generators[model_order[1]],
 
249
  ]
250
  for generator in [initial_responses, *resp_generators]:
251
  order += 1
252
  for resps in generator:
253
  v_resp, s_resp, q_resp = resps
254
  resp_1 = resps[model_order[0]]
255
+ resp_2 = s_resp #resps[model_order[1]]
256
+ resp_3 = resps[model_order[1]]
257
  spinner = spinners[spinner_id]
258
  spinner_id = (spinner_id + 1) % 4
259
  yield (
 
373
  model_shorthand = ["via", "salmonn", "qwen"]
374
  with gr.Blocks(theme=theme) as demo:
375
  state = gr.State(0)
376
+ model_order = gr.State([0, 1])
377
  with gr.Row():
378
  audio_input = gr.Audio(
379
  sources=["microphone"], streaming=False, label="Audio Input"
models/salmonn.py CHANGED
@@ -44,7 +44,7 @@ class SALMONN(nn.Module):
44
  speech_qformer_token_num=1,
45
  speech_qformer_layer=2,
46
  lora=True,
47
- device="cuda:0",
48
  lora_alpha=32,
49
  lora_rank=8,
50
  lora_dropout=0.1,
@@ -66,7 +66,7 @@ class SALMONN(nn.Module):
66
 
67
  # beats
68
  self.beats_ckpt = beats_path
69
- beats_checkpoint = torch.load(self.beats_ckpt, map_location=device)
70
  beats_cfg = BEATsConfig(beats_checkpoint["cfg"])
71
  beats = BEATs(beats_cfg)
72
  beats.load_state_dict(beats_checkpoint["model"])
@@ -130,7 +130,7 @@ class SALMONN(nn.Module):
130
  ).to(device)
131
 
132
  # load ckpt
133
- ckpt_dict = torch.load(ckpt)["model"]
134
  self.load_state_dict(ckpt_dict, strict=False)
135
 
136
  def generate(
@@ -138,7 +138,7 @@ class SALMONN(nn.Module):
138
  wav_path,
139
  prompt,
140
  prompt_pattern="USER: <Speech><SpeechHere></Speech> {}\nASSISTANT:",
141
- device="cuda:0",
142
  max_length=200,
143
  max_new_tokens=128,
144
  num_beams=1,
 
44
  speech_qformer_token_num=1,
45
  speech_qformer_layer=2,
46
  lora=True,
47
+ device="cuda",
48
  lora_alpha=32,
49
  lora_rank=8,
50
  lora_dropout=0.1,
 
66
 
67
  # beats
68
  self.beats_ckpt = beats_path
69
+ beats_checkpoint = torch.load(self.beats_ckpt)
70
  beats_cfg = BEATsConfig(beats_checkpoint["cfg"])
71
  beats = BEATs(beats_cfg)
72
  beats.load_state_dict(beats_checkpoint["model"])
 
130
  ).to(device)
131
 
132
  # load ckpt
133
+ ckpt_dict = torch.load(ckpt, map_location="cpu")["model"]
134
  self.load_state_dict(ckpt_dict, strict=False)
135
 
136
  def generate(
 
138
  wav_path,
139
  prompt,
140
  prompt_pattern="USER: <Speech><SpeechHere></Speech> {}\nASSISTANT:",
141
+ device="cuda",
142
  max_length=200,
143
  max_new_tokens=128,
144
  num_beams=1,
requirements.txt CHANGED
@@ -1,7 +1,8 @@
1
- huggingface_hub==0.22.2
2
- transformers
3
- peft
4
  accelerate
 
 
5
  librosa
6
  torchaudio
7
  transformers_stream_generator
 
1
+ transformers==4.43.3
2
+ spaces
 
3
  accelerate
4
+
5
+ peft
6
  librosa
7
  torchaudio
8
  transformers_stream_generator