import copy import os import random import sys import xxhash import gradio as gr import librosa import numpy as np import soundfile as sf import torch import torch.nn.functional as F from accelerate import infer_auto_device_map from datasets import Audio from safetensors.torch import load, load_model import spaces from torch import nn from transformers import ( AutoModelForCausalLM, AutoProcessor, AutoTokenizer, LlamaForCausalLM, TextIteratorStreamer, WhisperForConditionalGeneration, AutoProcessor, AutoModel, ) from transformers.generation import GenerationConfig anonymous = False diva_model = AutoModel.from_pretrained( "WillHeld/DiVA-llama-3-v0-8b", trust_remote_code=True ) resampler = Audio(sampling_rate=16_000) @spaces.GPU @torch.no_grad def diva_audio(audio_input, do_sample=False, temperature=0.001): sr, y = audio_input x = xxhash.xxh32(bytes(y)).hexdigest() y = y.astype(np.float32) y /= np.max(np.abs(y)) a = resampler.decode_example( resampler.encode_example({"array": y, "sampling_rate": sr}) ) yield from diva_model.generate_stream( a["array"], None, do_sample=do_sample, max_new_tokens=256 ) def transcribe_wrapper(audio_input, state, model_order): spinner = "◒" d_resp = gr.Textbox( value="♫♪.ılılıll|̲̅̅●̲̅̅|̲̅̅=̲̅̅|̲̅̅●̲̅̅|llılılı.♫♪loading♫♪.ılılıll|̲̅̅●̲̅̅|̲̅̅=̲̅̅|̲̅̅●̲̅̅|llılılı.♫♪loading♫♪.ılılıll|̲̅̅●̲̅̅|̲̅̅=̲̅̅|̲̅̅●̲̅̅|llılılı.♫♪♫♪", visible=True, label=model_names[0] if not anonymous else f"Model {order}", ) yield ( gr.Button( value="Loading Weights onto ZeroGPU..." interactive=False, variant="primary", ), d_resp, state, ) yield from transcribe(audio_input, state, model_order) @spaces.GPU def transcribe(audio_input, state, model_order): if audio_input == None: return ( "Click to run inference!", "", state, ) def gen_from_diva(): diva_resp = diva_audio(audio_input) for resp in diva_resp: d_resp = gr.Textbox( value=resp, visible=True, label=model_names[0] if not anonymous else f"Model {order}", ) yield d_resp spinner_id = 0 spinners = ["◐ ", "◓ ", "◑", "◒"] for response in gen_from_diva(): spinner = spinners[spinner_id] spinner_id = (spinner_id + 1) % 4 yield ( gr.Button( value=spinner + " Generating Responses " + spinner, interactive=False, variant="primary", ), response, state, ) yield ( gr.Button(value="Click to run inference!", interactive=True, variant="primary"), response, state, ) def on_page_load(state, model_order): if state == 0: gr.Info( "Record something you'd say to an AI Assistant! Think about what you usually use Siri, Google Assistant, or ChatGPT for." ) state = 1 if anonymous: random.shuffle(model_order) return state, model_order def recording_complete(state): if state == 1: gr.Info( "Once you submit your recording, DiVA will stream back a response! This might take a second as ZeroGPU needs to load model weights into vRAM!." ) state = 2 return ( gr.Button(value="Click to run inference!", interactive=True, variant="primary"), state, ) def clear_factory(button_id): def clear(audio_input, model_order): return ( model_order, gr.Button( value="Record Audio to Submit!", interactive=False, ), None, None, ) return clear theme = gr.themes.Soft( primary_hue=gr.themes.Color( c100="#82000019", c200="#82000033", c300="#8200004c", c400="#82000066", c50="#8200007f", c500="#8200007f", c600="#82000099", c700="#820000b2", c800="#820000cc", c900="#820000e5", c950="#820000f2", ), secondary_hue="rose", neutral_hue="stone", ) model_names = ["DiVA Llama 3 8B"] model_shorthand = ["diva"] with gr.Blocks(theme=theme) as demo: state = gr.State(0) model_order = gr.State([0, 1]) with gr.Row(): audio_input = gr.Audio( sources=["microphone"], streaming=False, label="Audio Input" ) with gr.Row(): btn = gr.Button(value="Record Audio to Submit!", interactive=False) with gr.Row(): out1 = gr.Textbox(visible=False) audio_input.stop_recording( recording_complete, [state], [btn, state], ) audio_input.start_recording( lambda: gr.Button( value="Uploading Audio to Cloud", interactive=False, variant="primary" ), None, btn, ) btn.click( fn=transcribe_wrapper, inputs=[audio_input, state, model_order], outputs=[btn, out1, state], ) audio_input.clear( clear_factory(None), [audio_input, model_order], [model_order, btn, audio_input, out1], ) demo.load( fn=on_page_load, inputs=[state, model_order], outputs=[state, model_order] ) demo.launch(share=True)