File size: 11,475 Bytes
6710c89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import os

import cv2

import gradio as gr
import numpy as np
import sys
import io
import torch


class Logger:
    def __init__(self):
        self.terminal = sys.stdout
        self.log = io.BytesIO()

    def write(self, message):
        self.terminal.write(message)
        self.log.write(bytes(message, encoding='utf-8'))

    def flush(self):
        self.terminal.flush()
        self.log.flush()

    def isatty(self):
        return False


log = Logger()
sys.stdout = log

def read_logs():
    out = log.log.getvalue().decode()
    if out.count("\n") >= 30:
        log.log = io.BytesIO()
    sys.stdout.flush()
    return out


with gr.Blocks() as app:
    gr.Markdown("""
# HINet (or INR-Harmonization) - A novel image Harmonization method based on Implicit neural Networks
## Harmonize any image you want! Arbitrary resolution, and arbitrary aspect ratio! 
### Official Gradio Demo
**Since Gradio Space only support CPU, the speed may kind of slow. You may better download the code to run locally with a GPU.**
<a href="https://huggingface.co/spaces/WindVChen/INR-Harmon?duplicate=true" style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank">
<img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> for no queue on your own hardware.</p>
* Official Repo: [INR-Harmonization](https://github.com/WindVChen/INR-Harmonization)
""")

    valid_checkpoints_dict = {"Resolution_256_iHarmony4": "Resolution_256_iHarmony4.pth",
                              "Resolution_1024_HAdobe5K": "Resolution_1024_HAdobe5K.pth",
                              "Resolution_2048_HAdobe5K": "Resolution_2048_HAdobe5K.pth",
                              "Resolution_RAW_HAdobe5K": "Resolution_RAW_HAdobe5K.pth",
                              "Resolution_RAW_iHarmony4": "Resolution_RAW_iHarmony4.pth"}

    global_state = gr.State({
        'pretrained_weight': valid_checkpoints_dict["Resolution_RAW_iHarmony4"],

    })
    with gr.Row():
        form_composite_image = gr.Image(label='Input Composite image', type='pil').style(height="auto")
        form_mask_image = gr.Image(label='Input Mask image', type='pil', interactive=False).style(
            height="auto")
    with gr.Row():
        with gr.Column(scale=4):
            with gr.Row():
                with gr.Column(scale=2, min_width=10):
                    gr.Markdown(value='Model Selection', show_label=False)

                with gr.Column(scale=4, min_width=10):
                    form_pretrained_dropdown = gr.Dropdown(
                        choices=list(valid_checkpoints_dict.values()),
                        label="Pretrained Model",
                        value=valid_checkpoints_dict["Resolution_RAW_iHarmony4"],
                        interactive=True
                    )

            with gr.Row():
                with gr.Column(scale=2, min_width=10):
                    gr.Markdown(value='Inference Mode', show_label=False)

                with gr.Column(scale=4, min_width=10):
                    form_inference_mode = gr.Radio(
                        ['Square Image', 'Arbitrary Image'],
                        value='Arbitrary Image',
                        interactive=False,
                        label='Mode',
                    )

            with gr.Row():
                with gr.Column(scale=2, min_width=10):
                    gr.Markdown(value='Split Parameter', show_label=False)

                with gr.Column(scale=4, min_width=10):
                    form_split_res = gr.Slider(
                        minimum=0,
                        maximum=2048,
                        step=128,
                        value=256,
                        interactive=False,
                        label="Split Resolution",
                    )
                    form_split_num = gr.Number(
                        value=8,
                        interactive=False,
                        label="Split Number")
            with gr.Row():
                form_log = gr.Textbox(read_logs, label="Logs", interactive=False, type="text", every=1)

        with gr.Column(scale=4):
            form_harmonized_image = gr.Image(label='Harmonized Result', type='numpy', interactive=False).style(
                height="auto")
            form_start_btn = gr.Button("Start Harmonization", interactive=False)
            form_reset_btn = gr.Button("Reset", interactive=True)


    def on_change_form_composite_image(form_composite_image):
        if form_composite_image is None:
            return gr.update(interactive=False, value=None), gr.update(value=None)
        return gr.update(interactive=True), gr.update(value=None)


    def on_change_form_mask_image(form_composite_image, form_mask_image):
        if form_mask_image is None:
            return gr.update(interactive=False if form_composite_image is None else True), gr.update(
                interactive=False), gr.update(interactive=False), gr.update(
                interactive=False), gr.update(interactive=False), gr.update(value=None)

        if form_composite_image.size[:2] != form_mask_image.size[:2]:
            raise gr.Error("Composite image and mask image should have the same resolution!")
        else:
            w, h = form_composite_image.size[:2]
            if h != w or (h % 16 != 0):
                return gr.update(value='Arbitrary Image', interactive=False), gr.update(interactive=True), gr.update(
                    interactive=True), gr.update(interactive=True), gr.update(interactive=False,
                                                                              value=-1), gr.update(value=None)
            else:
                return gr.update(value='Square Image', interactive=True), gr.update(interactive=True), gr.update(
                    interactive=True), gr.update(interactive=False), gr.update(interactive=True,
                                                                               value=h // 16,
                                                                               maximum=h,
                                                                               minimum=h // 16,
                                                                               step=h // 16), gr.update(value=None)


    form_composite_image.change(
        on_change_form_composite_image,
        inputs=[form_composite_image],
        outputs=[form_mask_image, form_harmonized_image]
    )

    form_mask_image.change(
        on_change_form_mask_image,
        inputs=[form_composite_image, form_mask_image],
        outputs=[form_inference_mode, form_mask_image, form_start_btn, form_split_num, form_split_res,
                 form_harmonized_image]
    )


    def on_change_form_split_num(form_composite_image, form_split_num):
        w, h = form_composite_image.size[:2]
        if form_split_num < 1:
            return gr.update(value=1)
        elif form_split_num > min(w, h):
            return gr.update(value=min(w, h))
        else:
            return gr.update(value=form_split_num)


    form_split_num.change(
        on_change_form_split_num,
        inputs=[form_composite_image, form_split_num],
        outputs=[form_split_num]
    )


    def on_change_form_inference_mode(form_inference_mode):
        if form_inference_mode == "Square Image":
            return gr.update(interactive=True), gr.update(interactive=False)
        else:
            return gr.update(interactive=False), gr.update(interactive=True)


    form_inference_mode.change(on_change_form_inference_mode, inputs=[form_inference_mode],
                               outputs=[form_split_res, form_split_num])


    def on_click_form_start_btn(form_composite_image, form_mask_image, form_pretrained_dropdown, form_inference_mode,
                                form_split_res, form_split_num):
        log.log = io.BytesIO()
        if form_inference_mode == "Square Image":
            from efficient_inference_for_square_image import parse_args, main_process
            opt = parse_args()
            opt.transform_mean = [.5, .5, .5]
            opt.transform_var = [.5, .5, .5]
            opt.pretrained = os.path.join("./pretrained_models", form_pretrained_dropdown)
            opt.split_resolution = form_split_res
            opt.save_path = None
            opt.workers = 0
            opt.device = "cuda" if torch.cuda.is_available() else "cpu"

            composite_image = np.asarray(form_composite_image)
            mask = np.asarray(form_mask_image)

            try:
                return cv2.cvtColor(
                    main_process(opt, composite_image=composite_image, mask=mask),
                    cv2.COLOR_BGR2RGB)
            except:
                raise gr.Error("Patches too big. Try to reduce the `split_res`!")

        else:
            from inference_for_arbitrary_resolution_image import parse_args, main_process
            opt = parse_args()
            opt.transform_mean = [.5, .5, .5]
            opt.transform_var = [.5, .5, .5]
            opt.pretrained = os.path.join("./pretrained_models", form_pretrained_dropdown)
            opt.split_num = int(form_split_num)
            opt.save_path = None
            opt.workers = 0
            opt.device = "cuda" if torch.cuda.is_available() else "cpu"

            composite_image = np.asarray(form_composite_image)
            mask = np.asarray(form_mask_image)

            try:
                return cv2.cvtColor(
                    main_process(opt, composite_image=composite_image, mask=mask),
                    cv2.COLOR_BGR2RGB)
            except:
                raise gr.Error("Patches too big. Try to increase the `split_num`!")


    form_start_btn.click(on_click_form_start_btn,
                         inputs=[form_composite_image, form_mask_image, form_pretrained_dropdown, form_inference_mode,
                                 form_split_res, form_split_num], outputs=[form_harmonized_image])


    def on_click_form_reset_btn():
        log.log = io.BytesIO()
        return gr.update(value=None), gr.update(value=None, interactive=True), gr.update(value=None,
                                                                                         interactive=False), gr.update(
            interactive=False)


    form_reset_btn.click(on_click_form_reset_btn,
                         inputs=None, outputs=[form_log, form_composite_image, form_mask_image, form_start_btn])

    gr.Markdown("""
        ## Quick Start
        1. Select desired `Pretrained Model`.
        2. Select a composite image, and then a mask with the same size.
        3. Select the inference mode (for non-square image, only `Arbitrary Image` support).
        4. Set `Split Resolution` (Patches' resolution) or `Split Number` (How many patches, about N*N) according to the inference mode.
        3. Click `Start` and enjoy it!

        """)
    gr.HTML("""
        <style>
            .container {
                position: absolute;
                height: 50px;
                text-align: center;
                line-height: 50px;
                width: 100%;
            }
        </style>
        <div class="container">
        Gradio demo supported by
        <a href="https://github.com/WindVChen">WindVChen</a>
        </div>
        """)

gr.close_all()

app.queue(concurrency_count=1, max_size=200, api_open=False)

app.launch(show_api=False, server_port=12345)