File size: 26,158 Bytes
033bd8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
import torch
import torchvision
from torch import nn as nn
import torch.nn.functional as F
import numpy as np
import math

from .basic_blocks import ConvBlock, lineParams, convParams
from .ops import MaskedChannelAttention, FeaturesConnector
from .ops import PosEncodingNeRF, INRGAN_embed, RandomFourier, CIPS_embed
from utils import misc
from utils.misc import lin2img
from ..lut_transformation_net import build_lut_transform


class Sine(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, input):
        return torch.sin(30 * input)


class Leaky_relu(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, input):
        return torch.nn.functional.leaky_relu(input, 0.01, inplace=True)


def select_activation(type):
    if type == 'sine':
        return Sine()
    elif type == 'leakyrelu_pe':
        return Leaky_relu()
    else:
        raise NotImplementedError


class ConvEncoder(nn.Module):
    def __init__(
            self,
            depth, ch,
            norm_layer, batchnorm_from, max_channels,
            backbone_from, backbone_channels=None, backbone_mode='', INRDecode=False
    ):
        super(ConvEncoder, self).__init__()
        self.depth = depth
        self.INRDecode = INRDecode
        self.backbone_from = backbone_from
        backbone_channels = [] if backbone_channels is None else backbone_channels[::-1]

        in_channels = 4
        out_channels = ch

        self.block0 = ConvBlock(in_channels, out_channels, norm_layer=norm_layer if batchnorm_from == 0 else None)
        self.block1 = ConvBlock(out_channels, out_channels, norm_layer=norm_layer if 0 <= batchnorm_from <= 1 else None)
        self.blocks_channels = [out_channels, out_channels]

        self.blocks_connected = nn.ModuleDict()
        self.connectors = nn.ModuleDict()
        for block_i in range(2, depth):
            if block_i % 2:
                in_channels = out_channels
            else:
                in_channels, out_channels = out_channels, min(2 * out_channels, max_channels)

            if 0 <= backbone_from <= block_i and len(backbone_channels):
                if INRDecode:
                    self.blocks_connected[f'block{block_i}_decode'] = ConvBlock(
                        in_channels, out_channels,
                        norm_layer=norm_layer if 0 <= batchnorm_from <= block_i else None,
                        padding=int(block_i < depth - 1)
                    )
                    self.blocks_channels += [out_channels]
                stage_channels = backbone_channels.pop()
                connector = FeaturesConnector(backbone_mode, in_channels, stage_channels, in_channels)
                self.connectors[f'connector{block_i}'] = connector
                in_channels = connector.output_channels

            self.blocks_connected[f'block{block_i}'] = ConvBlock(
                in_channels, out_channels,
                norm_layer=norm_layer if 0 <= batchnorm_from <= block_i else None,
                padding=int(block_i < depth - 1)
            )
            self.blocks_channels += [out_channels]

    def forward(self, x, backbone_features):
        backbone_features = [] if backbone_features is None else backbone_features[::-1]

        outputs = [self.block0(x)]
        outputs += [self.block1(outputs[-1])]

        for block_i in range(2, self.depth):
            output = outputs[-1]
            connector_name = f'connector{block_i}'
            if connector_name in self.connectors:
                if self.INRDecode:
                    block = self.blocks_connected[f'block{block_i}_decode']
                    outputs += [block(output)]

                stage_features = backbone_features.pop()
                connector = self.connectors[connector_name]
                output = connector(output, stage_features)
            block = self.blocks_connected[f'block{block_i}']
            outputs += [block(output)]

        return outputs[::-1]


class DeconvDecoder(nn.Module):
    def __init__(self, depth, encoder_blocks_channels, norm_layer, attend_from=-1, image_fusion=False):
        super(DeconvDecoder, self).__init__()
        self.image_fusion = image_fusion
        self.deconv_blocks = nn.ModuleList()

        in_channels = encoder_blocks_channels.pop()
        out_channels = in_channels
        for d in range(depth):
            out_channels = encoder_blocks_channels.pop() if len(encoder_blocks_channels) else in_channels // 2
            self.deconv_blocks.append(SEDeconvBlock(
                in_channels, out_channels,
                norm_layer=norm_layer,
                padding=0 if d == 0 else 1,
                with_se=0 <= attend_from <= d
            ))
            in_channels = out_channels

        if self.image_fusion:
            self.conv_attention = nn.Conv2d(out_channels, 1, kernel_size=1)
        self.to_rgb = nn.Conv2d(out_channels, 3, kernel_size=1)

    def forward(self, encoder_outputs, image, mask=None):
        output = encoder_outputs[0]
        for block, skip_output in zip(self.deconv_blocks[:-1], encoder_outputs[1:]):
            output = block(output, mask)
            output = output + skip_output
        output = self.deconv_blocks[-1](output, mask)

        if self.image_fusion:
            attention_map = torch.sigmoid(3.0 * self.conv_attention(output))
            output = attention_map * image + (1.0 - attention_map) * self.to_rgb(output)
        else:
            output = self.to_rgb(output)

        return output


class SEDeconvBlock(nn.Module):
    def __init__(
            self,
            in_channels, out_channels,
            kernel_size=4, stride=2, padding=1,
            norm_layer=nn.BatchNorm2d, activation=nn.ELU,
            with_se=False
    ):
        super(SEDeconvBlock, self).__init__()
        self.with_se = with_se
        self.block = nn.Sequential(
            nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding),
            norm_layer(out_channels) if norm_layer is not None else nn.Identity(),
            activation(),
        )
        if self.with_se:
            self.se = MaskedChannelAttention(out_channels)

    def forward(self, x, mask=None):
        out = self.block(x)
        if self.with_se:
            out = self.se(out, mask)
        return out


class INRDecoder(nn.Module):
    def __init__(self, depth, encoder_blocks_channels, norm_layer, opt, attend_from):
        super(INRDecoder, self).__init__()
        self.INR_encoding = None
        if opt.embedding_type == "PosEncodingNeRF":
            self.INR_encoding = PosEncodingNeRF(in_features=2, sidelength=opt.input_size)
        elif opt.embedding_type == "RandomFourier":
            self.INR_encoding = RandomFourier(std_scale=10, embedding_length=64, device=opt.device)
        elif opt.embedding_type == "CIPS_embed":
            self.INR_encoding = CIPS_embed(size=opt.base_size, embedding_length=32)
        elif opt.embedding_type == "INRGAN_embed":
            self.INR_encoding = INRGAN_embed(resolution=opt.INR_input_size)
        else:
            raise NotImplementedError
        encoder_blocks_channels = encoder_blocks_channels[::-1]
        max_hidden_mlp_num = attend_from + 1
        self.opt = opt
        self.max_hidden_mlp_num = max_hidden_mlp_num
        self.content_mlp_blocks = nn.ModuleDict()
        for n in range(max_hidden_mlp_num):
            if n != max_hidden_mlp_num - 1:
                self.content_mlp_blocks[f"block{n}"] = convParams(encoder_blocks_channels.pop(),
                                                                  [self.INR_encoding.out_dim + opt.INR_MLP_dim + (
                                                                      4 if opt.isMoreINRInput else 0), opt.INR_MLP_dim],
                                                                  opt, n + 1)
            else:
                self.content_mlp_blocks[f"block{n}"] = convParams(encoder_blocks_channels.pop(),
                                                                  [self.INR_encoding.out_dim + (
                                                                      4 if opt.isMoreINRInput else 0), opt.INR_MLP_dim],
                                                                  opt, n + 1)

        self.deconv_blocks = nn.ModuleList()

        encoder_blocks_channels = encoder_blocks_channels[::-1]
        in_channels = encoder_blocks_channels.pop()
        out_channels = in_channels
        for d in range(depth - attend_from):
            out_channels = encoder_blocks_channels.pop() if len(encoder_blocks_channels) else in_channels // 2
            self.deconv_blocks.append(SEDeconvBlock(
                in_channels, out_channels,
                norm_layer=norm_layer,
                padding=0 if d == 0 else 1,
                with_se=False
            ))
            in_channels = out_channels

        self.appearance_mlps = lineParams(out_channels, [opt.INR_MLP_dim, opt.INR_MLP_dim],
                                          (opt.base_size // (2 ** (max_hidden_mlp_num - 1))) ** 2,
                                          opt, 2, toRGB=True)

        self.lut_transform = build_lut_transform(self.appearance_mlps.output_dim, opt.LUT_dim,
                                                 None, opt)

        self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False)

    def forward(self, encoder_outputs, image=None, mask=None, coord_samples=None, start_proportion=None):
        """For full resolution, do split."""
        if self.opt.hr_train and not (self.training or hasattr(self.opt, 'split_num') or hasattr(self.opt,
                                                                                                 'split_resolution')) and self.opt.isFullRes:
            return self.forward_fullResInference(encoder_outputs, image=image, mask=mask, coord_samples=coord_samples)

        encoder_outputs = encoder_outputs[::-1]
        mlp_output = None
        waitToRGB = []
        for n in range(self.max_hidden_mlp_num):
            if not self.opt.hr_train:
                coord = misc.get_mgrid(self.opt.INR_input_size // (2 ** (self.max_hidden_mlp_num - n - 1))) \
                    .unsqueeze(0).repeat(encoder_outputs[0].shape[0], 1, 1).to(self.opt.device)
            else:
                if self.training or hasattr(self.opt, 'split_num') or hasattr(self.opt, 'split_resolution'):
                    coord = coord_samples[self.max_hidden_mlp_num - n - 1].permute(0, 2, 3, 1).view(
                        encoder_outputs[0].shape[0], -1, 2)
                else:
                    coord = misc.get_mgrid(
                        self.opt.INR_input_size // (2 ** (self.max_hidden_mlp_num - n - 1))).unsqueeze(0).repeat(
                        encoder_outputs[0].shape[0], 1, 1).to(self.opt.device)

            """Whether to leverage multiple input to INR decoder. See Section 3.4 in the paper."""
            if self.opt.isMoreINRInput:
                if not self.opt.isFullRes or (
                        self.training or hasattr(self.opt, 'split_num') or hasattr(self.opt, 'split_resolution')):
                    res_h = res_w = np.sqrt(coord.shape[1]).astype(int)
                else:
                    res_h = image.shape[-2] // (2 ** (self.max_hidden_mlp_num - n - 1))
                    res_w = image.shape[-1] // (2 ** (self.max_hidden_mlp_num - n - 1))

                res_image = torchvision.transforms.Resize([res_h, res_w])(image)
                res_mask = torchvision.transforms.Resize([res_h, res_w])(mask)
                coord = torch.cat([self.INR_encoding(coord), res_image.view(*res_image.shape[:2], -1).permute(0, 2, 1),
                                   res_mask.view(*res_mask.shape[:2], -1).permute(0, 2, 1)], dim=-1)
            else:
                coord = self.INR_encoding(coord)

            """============ LRIP structure, see Section 3.3 =============="""

            """Local MLPs."""
            if n == 0:
                mlp_output = self.mlp_process(coord, self.INR_encoding.out_dim + (4 if self.opt.isMoreINRInput else 0),
                                              self.opt, content_mlp=self.content_mlp_blocks[
                        f"block{self.max_hidden_mlp_num - 1 - n}"](
                        encoder_outputs.pop(self.max_hidden_mlp_num - 1 - n)), start_proportion=start_proportion)
                waitToRGB.append(mlp_output[1])
            else:
                mlp_output = self.mlp_process(coord, self.opt.INR_MLP_dim + self.INR_encoding.out_dim + (
                    4 if self.opt.isMoreINRInput else 0), self.opt, base_feat=mlp_output[0],
                                              content_mlp=self.content_mlp_blocks[
                                                  f"block{self.max_hidden_mlp_num - 1 - n}"](
                                                  encoder_outputs.pop(self.max_hidden_mlp_num - 1 - n)),
                                              start_proportion=start_proportion)
                waitToRGB.append(mlp_output[1])

        encoder_outputs = encoder_outputs[::-1]
        output = encoder_outputs[0]
        for block, skip_output in zip(self.deconv_blocks[:-1], encoder_outputs[1:]):
            output = block(output)
            output = output + skip_output
        output = self.deconv_blocks[-1](output)

        """Global MLPs."""
        app_mlp, app_params = self.appearance_mlps(output)
        harm_out = []
        for id in range(len(waitToRGB)):
            output = self.mlp_process(None, self.opt.INR_MLP_dim, self.opt, base_feat=waitToRGB[id],
                                      appearance_mlp=app_mlp)
            harm_out.append(output[0])

        """Optional 3D LUT prediction."""
        fit_lut3d, lut_transform_image = self.lut_transform(image, app_params, None)

        return harm_out, fit_lut3d, lut_transform_image

    def mlp_process(self, coorinates, INR_input_dim, opt, base_feat=None, content_mlp=None, appearance_mlp=None,
                    resolution=None, start_proportion=None):

        activation = select_activation(opt.activation)

        output = None

        if content_mlp is not None:
            if base_feat is not None:
                coorinates = torch.cat([coorinates, base_feat], dim=2)
            coorinates = lin2img(coorinates, resolution)

            if hasattr(opt, 'split_resolution'):
                """
                    Here we crop the needed MLPs according to the region of the split input patches. 
                    Note that this only support inferencing square images.
                """
                for idx in range(len(content_mlp)):
                    content_mlp[idx][0] = content_mlp[idx][0][:,
                                          (content_mlp[idx][0].shape[1] * start_proportion[0]).int():(
                                                      content_mlp[idx][0].shape[1] * start_proportion[2]).int(),
                                          (content_mlp[idx][0].shape[2] * start_proportion[1]).int():(
                                                      content_mlp[idx][0].shape[2] * start_proportion[3]).int(), :,
                                          :]
                    content_mlp[idx][1] = content_mlp[idx][1][:,
                                          (content_mlp[idx][1].shape[1] * start_proportion[0]).int():(
                                                      content_mlp[idx][1].shape[1] * start_proportion[2]).int(),
                                          (content_mlp[idx][1].shape[2] * start_proportion[1]).int():(
                                                      content_mlp[idx][1].shape[2] * start_proportion[3]).int(),
                                          :,
                                          :]
                k_h = coorinates.shape[2] // content_mlp[0][0].shape[1]
                k_w = coorinates.shape[3] // content_mlp[0][0].shape[1]
                bs = coorinates.shape[0]
                h_lr = w_lr = content_mlp[0][0].shape[1]
                nci = INR_input_dim

                coorinates = coorinates.unfold(2, k_h, k_h).unfold(3, k_w, k_w)
                coorinates = coorinates.permute(0, 2, 3, 4, 5, 1).contiguous().view(
                    bs, h_lr, w_lr, int(k_h * k_w), nci)

                for id, layer in enumerate(content_mlp):
                    if id == 0:
                        output = torch.matmul(coorinates, layer[0]) + layer[1]
                        output = activation(output)
                    else:
                        output = torch.matmul(output, layer[0]) + layer[1]
                        output = activation(output)

                output = output.view(bs, h_lr, w_lr, k_h, k_w, opt.INR_MLP_dim).permute(
                    0, 1, 3, 2, 4, 5).contiguous().view(bs, -1, opt.INR_MLP_dim)

                output_large = self.up(lin2img(output))

                return output_large.view(bs, -1, opt.INR_MLP_dim), output

            k_h = coorinates.shape[2] // content_mlp[0][0].shape[1]
            k_w = coorinates.shape[3] // content_mlp[0][0].shape[1]
            bs = coorinates.shape[0]
            h_lr = w_lr = content_mlp[0][0].shape[1]
            nci = INR_input_dim

            """(evaluation or not HR training) and not fullres evaluation"""
            if (not self.opt.hr_train or not (self.training or hasattr(self.opt, 'split_num'))) and not (
                    not (self.training or hasattr(self.opt, 'split_num')) and self.opt.isFullRes and self.opt.hr_train):
                coorinates = coorinates.unfold(2, k_h, k_h).unfold(3, k_w, k_w)
                coorinates = coorinates.permute(0, 2, 3, 4, 5, 1).contiguous().view(
                    bs, h_lr, w_lr, int(k_h * k_w), nci)

                for id, layer in enumerate(content_mlp):
                    if id == 0:
                        output = torch.matmul(coorinates, layer[0]) + layer[1]
                        output = activation(output)
                    else:
                        output = torch.matmul(output, layer[0]) + layer[1]
                        output = activation(output)

                output = output.view(bs, h_lr, w_lr, k_h, k_w, opt.INR_MLP_dim).permute(
                    0, 1, 3, 2, 4, 5).contiguous().view(bs, -1, opt.INR_MLP_dim)

                output_large = self.up(lin2img(output))

                return output_large.view(bs, -1, opt.INR_MLP_dim), output
            else:
                coorinates = coorinates.permute(0, 2, 3, 1)
                for id, layer in enumerate(content_mlp):
                    weigt_shape = layer[0].shape
                    bias_shape = layer[1].shape
                    layer[0] = layer[0].view(*layer[0].shape[:-2], -1).permute(0, 3, 1, 2).contiguous()
                    layer[1] = layer[1].view(*layer[1].shape[:-2], -1).permute(0, 3, 1, 2).contiguous()
                    layer[0] = F.grid_sample(layer[0], coorinates[..., :2].flip(-1), mode='nearest' if True
                    else 'bilinear', padding_mode='border', align_corners=False)
                    layer[1] = F.grid_sample(layer[1], coorinates[..., :2].flip(-1), mode='nearest' if True
                    else 'bilinear', padding_mode='border', align_corners=False)
                    layer[0] = layer[0].permute(0, 2, 3, 1).contiguous().view(*coorinates.shape[:-1], *weigt_shape[-2:])
                    layer[1] = layer[1].permute(0, 2, 3, 1).contiguous().view(*coorinates.shape[:-1], *bias_shape[-2:])

                    if id == 0:
                        output = torch.matmul(coorinates.unsqueeze(-2), layer[0]) + layer[1]
                        output = activation(output)
                    else:
                        output = torch.matmul(output, layer[0]) + layer[1]
                        output = activation(output)

                output = output.squeeze(-2).view(bs, -1, opt.INR_MLP_dim)

                output_large = self.up(lin2img(output, resolution))

                return output_large.view(bs, -1, opt.INR_MLP_dim), output

        elif appearance_mlp is not None:
            output = base_feat
            genMask = None
            for id, layer in enumerate(appearance_mlp):
                if id != len(appearance_mlp) - 1:
                    output = torch.matmul(output, layer[0]) + layer[1]
                    output = activation(output)
                else:
                    output = torch.matmul(output, layer[0]) + layer[1]  # last layer
                    if opt.activation == 'leakyrelu_pe':
                        output = torch.tanh(output)
            return lin2img(output, resolution), None

    def forward_fullResInference(self, encoder_outputs, image=None, mask=None, coord_samples=None):
        encoder_outputs = encoder_outputs[::-1]
        mlp_output = None
        res_w = image.shape[-1]
        res_h = image.shape[-2]
        coord = misc.get_mgrid([image.shape[-2], image.shape[-1]]).unsqueeze(0).repeat(
            encoder_outputs[0].shape[0], 1, 1).to(self.opt.device)

        if self.opt.isMoreINRInput:
            coord = torch.cat(
                [self.INR_encoding(coord, (res_h, res_w)), image.view(*image.shape[:2], -1).permute(0, 2, 1),
                 mask.view(*mask.shape[:2], -1).permute(0, 2, 1)], dim=-1)
        else:
            coord = self.INR_encoding(coord, (res_h, res_w))

        total = coord.clone()

        interval = 10
        all_intervals = math.ceil(res_h / interval)
        divisible = True
        if res_h / interval != res_h // interval:
            divisible = False

        for n in range(self.max_hidden_mlp_num):
            accum_mlp_output = []
            for line in range(all_intervals):
                if not divisible and line == all_intervals - 1:
                    coord = total[:, line * interval * res_w:, :]
                else:
                    coord = total[:, line * interval * res_w: (line + 1) * interval * res_w, :]
                if n == 0:
                    accum_mlp_output.append(self.mlp_process(coord,
                                                             self.INR_encoding.out_dim + (
                                                                 4 if self.opt.isMoreINRInput else 0),
                                                             self.opt, content_mlp=self.content_mlp_blocks[
                            f"block{self.max_hidden_mlp_num - 1 - n}"](
                            encoder_outputs.pop(self.max_hidden_mlp_num - 1 - n) if line == all_intervals - 1 else
                            encoder_outputs[self.max_hidden_mlp_num - 1 - n]),
                                                             resolution=(interval,
                                                                         res_w) if divisible or line != all_intervals - 1 else (
                                                                 res_h - interval * (all_intervals - 1), res_w))[1])

                else:
                    accum_mlp_output.append(self.mlp_process(coord, self.opt.INR_MLP_dim + self.INR_encoding.out_dim + (
                        4 if self.opt.isMoreINRInput else 0), self.opt, base_feat=mlp_output[0][:,
                                                                                  line * interval * res_w: (
                                                                                                                   line + 1) * interval * res_w,
                                                                                  :]
                    if divisible or line != all_intervals - 1 else mlp_output[0][:, line * interval * res_w:, :],
                                                             content_mlp=self.content_mlp_blocks[
                                                                 f"block{self.max_hidden_mlp_num - 1 - n}"](
                                                                 encoder_outputs.pop(
                                                                     self.max_hidden_mlp_num - 1 - n) if line == all_intervals - 1 else
                                                                 encoder_outputs[self.max_hidden_mlp_num - 1 - n]),
                                                             resolution=(interval,
                                                                         res_w) if divisible or line != all_intervals - 1 else (
                                                                 res_h - interval * (all_intervals - 1), res_w))[1])

            accum_mlp_output = torch.cat(accum_mlp_output, dim=1)
            mlp_output = [accum_mlp_output, accum_mlp_output]

        encoder_outputs = encoder_outputs[::-1]
        output = encoder_outputs[0]
        for block, skip_output in zip(self.deconv_blocks[:-1], encoder_outputs[1:]):
            output = block(output)
            output = output + skip_output
        output = self.deconv_blocks[-1](output)

        app_mlp, app_params = self.appearance_mlps(output)
        harm_out = []

        accum_mlp_output = []
        for line in range(all_intervals):
            if not divisible and line == all_intervals - 1:
                base = mlp_output[1][:, line * interval * res_w:, :]
            else:
                base = mlp_output[1][:, line * interval * res_w: (line + 1) * interval * res_w, :]

            accum_mlp_output.append(self.mlp_process(None, self.opt.INR_MLP_dim, self.opt, base_feat=base,
                                                     appearance_mlp=app_mlp,
                                                     resolution=(
                                                         interval,
                                                         res_w) if divisible or line != all_intervals - 1 else (
                                                         res_h - interval * (all_intervals - 1), res_w))[0])

        accum_mlp_output = torch.cat(accum_mlp_output, dim=2)
        harm_out.append(accum_mlp_output)

        fit_lut3d, lut_transform_image = self.lut_transform(image, app_params, None)

        return harm_out, fit_lut3d, lut_transform_image