Spaces:
Running
Running
File size: 17,396 Bytes
e200a3f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 |
import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch._utils
from .ocr import SpatialOCR_Module, SpatialGather_Module
from .resnetv1b import BasicBlockV1b, BottleneckV1b
relu_inplace = True
class HighResolutionModule(nn.Module):
def __init__(self, num_branches, blocks, num_blocks, num_inchannels,
num_channels, fuse_method,multi_scale_output=True,
norm_layer=nn.BatchNorm2d, align_corners=True):
super(HighResolutionModule, self).__init__()
self._check_branches(num_branches, num_blocks, num_inchannels, num_channels)
self.num_inchannels = num_inchannels
self.fuse_method = fuse_method
self.num_branches = num_branches
self.norm_layer = norm_layer
self.align_corners = align_corners
self.multi_scale_output = multi_scale_output
self.branches = self._make_branches(
num_branches, blocks, num_blocks, num_channels)
self.fuse_layers = self._make_fuse_layers()
self.relu = nn.ReLU(inplace=relu_inplace)
def _check_branches(self, num_branches, num_blocks, num_inchannels, num_channels):
if num_branches != len(num_blocks):
error_msg = 'NUM_BRANCHES({}) <> NUM_BLOCKS({})'.format(
num_branches, len(num_blocks))
raise ValueError(error_msg)
if num_branches != len(num_channels):
error_msg = 'NUM_BRANCHES({}) <> NUM_CHANNELS({})'.format(
num_branches, len(num_channels))
raise ValueError(error_msg)
if num_branches != len(num_inchannels):
error_msg = 'NUM_BRANCHES({}) <> NUM_INCHANNELS({})'.format(
num_branches, len(num_inchannels))
raise ValueError(error_msg)
def _make_one_branch(self, branch_index, block, num_blocks, num_channels,
stride=1):
downsample = None
if stride != 1 or \
self.num_inchannels[branch_index] != num_channels[branch_index] * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.num_inchannels[branch_index],
num_channels[branch_index] * block.expansion,
kernel_size=1, stride=stride, bias=False),
self.norm_layer(num_channels[branch_index] * block.expansion),
)
layers = []
layers.append(block(self.num_inchannels[branch_index],
num_channels[branch_index], stride,
downsample=downsample, norm_layer=self.norm_layer))
self.num_inchannels[branch_index] = \
num_channels[branch_index] * block.expansion
for i in range(1, num_blocks[branch_index]):
layers.append(block(self.num_inchannels[branch_index],
num_channels[branch_index],
norm_layer=self.norm_layer))
return nn.Sequential(*layers)
def _make_branches(self, num_branches, block, num_blocks, num_channels):
branches = []
for i in range(num_branches):
branches.append(
self._make_one_branch(i, block, num_blocks, num_channels))
return nn.ModuleList(branches)
def _make_fuse_layers(self):
if self.num_branches == 1:
return None
num_branches = self.num_branches
num_inchannels = self.num_inchannels
fuse_layers = []
for i in range(num_branches if self.multi_scale_output else 1):
fuse_layer = []
for j in range(num_branches):
if j > i:
fuse_layer.append(nn.Sequential(
nn.Conv2d(in_channels=num_inchannels[j],
out_channels=num_inchannels[i],
kernel_size=1,
bias=False),
self.norm_layer(num_inchannels[i])))
elif j == i:
fuse_layer.append(None)
else:
conv3x3s = []
for k in range(i - j):
if k == i - j - 1:
num_outchannels_conv3x3 = num_inchannels[i]
conv3x3s.append(nn.Sequential(
nn.Conv2d(num_inchannels[j],
num_outchannels_conv3x3,
kernel_size=3, stride=2, padding=1, bias=False),
self.norm_layer(num_outchannels_conv3x3)))
else:
num_outchannels_conv3x3 = num_inchannels[j]
conv3x3s.append(nn.Sequential(
nn.Conv2d(num_inchannels[j],
num_outchannels_conv3x3,
kernel_size=3, stride=2, padding=1, bias=False),
self.norm_layer(num_outchannels_conv3x3),
nn.ReLU(inplace=relu_inplace)))
fuse_layer.append(nn.Sequential(*conv3x3s))
fuse_layers.append(nn.ModuleList(fuse_layer))
return nn.ModuleList(fuse_layers)
def get_num_inchannels(self):
return self.num_inchannels
def forward(self, x):
if self.num_branches == 1:
return [self.branches[0](x[0])]
for i in range(self.num_branches):
x[i] = self.branches[i](x[i])
x_fuse = []
for i in range(len(self.fuse_layers)):
y = x[0] if i == 0 else self.fuse_layers[i][0](x[0])
for j in range(1, self.num_branches):
if i == j:
y = y + x[j]
elif j > i:
width_output = x[i].shape[-1]
height_output = x[i].shape[-2]
y = y + F.interpolate(
self.fuse_layers[i][j](x[j]),
size=[height_output, width_output],
mode='bilinear', align_corners=self.align_corners)
else:
y = y + self.fuse_layers[i][j](x[j])
x_fuse.append(self.relu(y))
return x_fuse
class HighResolutionNet(nn.Module):
def __init__(self, width, num_classes, ocr_width=256, small=False,
norm_layer=nn.BatchNorm2d, align_corners=True, opt=None):
super(HighResolutionNet, self).__init__()
self.opt = opt
self.norm_layer = norm_layer
self.width = width
self.ocr_width = ocr_width
self.ocr_on = ocr_width > 0
self.align_corners = align_corners
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1, bias=False)
self.bn1 = norm_layer(64)
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1, bias=False)
self.bn2 = norm_layer(64)
self.relu = nn.ReLU(inplace=relu_inplace)
num_blocks = 2 if small else 4
stage1_num_channels = 64
self.layer1 = self._make_layer(BottleneckV1b, 64, stage1_num_channels, blocks=num_blocks)
stage1_out_channel = BottleneckV1b.expansion * stage1_num_channels
self.stage2_num_branches = 2
num_channels = [width, 2 * width]
num_inchannels = [
num_channels[i] * BasicBlockV1b.expansion for i in range(len(num_channels))]
self.transition1 = self._make_transition_layer(
[stage1_out_channel], num_inchannels)
self.stage2, pre_stage_channels = self._make_stage(
BasicBlockV1b, num_inchannels=num_inchannels, num_modules=1, num_branches=self.stage2_num_branches,
num_blocks=2 * [num_blocks], num_channels=num_channels)
self.stage3_num_branches = 3
num_channels = [width, 2 * width, 4 * width]
num_inchannels = [
num_channels[i] * BasicBlockV1b.expansion for i in range(len(num_channels))]
self.transition2 = self._make_transition_layer(
pre_stage_channels, num_inchannels)
self.stage3, pre_stage_channels = self._make_stage(
BasicBlockV1b, num_inchannels=num_inchannels,
num_modules=3 if small else 4, num_branches=self.stage3_num_branches,
num_blocks=3 * [num_blocks], num_channels=num_channels)
self.stage4_num_branches = 4
num_channels = [width, 2 * width, 4 * width, 8 * width]
num_inchannels = [
num_channels[i] * BasicBlockV1b.expansion for i in range(len(num_channels))]
self.transition3 = self._make_transition_layer(
pre_stage_channels, num_inchannels)
self.stage4, pre_stage_channels = self._make_stage(
BasicBlockV1b, num_inchannels=num_inchannels, num_modules=2 if small else 3,
num_branches=self.stage4_num_branches,
num_blocks=4 * [num_blocks], num_channels=num_channels)
if self.ocr_on:
last_inp_channels = np.int(np.sum(pre_stage_channels))
ocr_mid_channels = 2 * ocr_width
ocr_key_channels = ocr_width
self.conv3x3_ocr = nn.Sequential(
nn.Conv2d(last_inp_channels, ocr_mid_channels,
kernel_size=3, stride=1, padding=1),
norm_layer(ocr_mid_channels),
nn.ReLU(inplace=relu_inplace),
)
self.ocr_gather_head = SpatialGather_Module(num_classes)
self.ocr_distri_head = SpatialOCR_Module(in_channels=ocr_mid_channels,
key_channels=ocr_key_channels,
out_channels=ocr_mid_channels,
scale=1,
dropout=0.05,
norm_layer=norm_layer,
align_corners=align_corners, opt=opt)
def _make_transition_layer(
self, num_channels_pre_layer, num_channels_cur_layer):
num_branches_cur = len(num_channels_cur_layer)
num_branches_pre = len(num_channels_pre_layer)
transition_layers = []
for i in range(num_branches_cur):
if i < num_branches_pre:
if num_channels_cur_layer[i] != num_channels_pre_layer[i]:
transition_layers.append(nn.Sequential(
nn.Conv2d(num_channels_pre_layer[i],
num_channels_cur_layer[i],
kernel_size=3,
stride=1,
padding=1,
bias=False),
self.norm_layer(num_channels_cur_layer[i]),
nn.ReLU(inplace=relu_inplace)))
else:
transition_layers.append(None)
else:
conv3x3s = []
for j in range(i + 1 - num_branches_pre):
inchannels = num_channels_pre_layer[-1]
outchannels = num_channels_cur_layer[i] \
if j == i - num_branches_pre else inchannels
conv3x3s.append(nn.Sequential(
nn.Conv2d(inchannels, outchannels,
kernel_size=3, stride=2, padding=1, bias=False),
self.norm_layer(outchannels),
nn.ReLU(inplace=relu_inplace)))
transition_layers.append(nn.Sequential(*conv3x3s))
return nn.ModuleList(transition_layers)
def _make_layer(self, block, inplanes, planes, blocks, stride=1):
downsample = None
if stride != 1 or inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
self.norm_layer(planes * block.expansion),
)
layers = []
layers.append(block(inplanes, planes, stride,
downsample=downsample, norm_layer=self.norm_layer))
inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(inplanes, planes, norm_layer=self.norm_layer))
return nn.Sequential(*layers)
def _make_stage(self, block, num_inchannels,
num_modules, num_branches, num_blocks, num_channels,
fuse_method='SUM',
multi_scale_output=True):
modules = []
for i in range(num_modules):
# multi_scale_output is only used last module
if not multi_scale_output and i == num_modules - 1:
reset_multi_scale_output = False
else:
reset_multi_scale_output = True
modules.append(
HighResolutionModule(num_branches,
block,
num_blocks,
num_inchannels,
num_channels,
fuse_method,
reset_multi_scale_output,
norm_layer=self.norm_layer,
align_corners=self.align_corners)
)
num_inchannels = modules[-1].get_num_inchannels()
return nn.Sequential(*modules), num_inchannels
def forward(self, x, mask=None, additional_features=None):
hrnet_feats = self.compute_hrnet_feats(x, additional_features)
if not self.ocr_on:
return hrnet_feats,
ocr_feats = self.conv3x3_ocr(hrnet_feats)
mask = nn.functional.interpolate(mask, size=ocr_feats.size()[2:], mode='bilinear', align_corners=True)
context = self.ocr_gather_head(ocr_feats, mask)
ocr_feats = self.ocr_distri_head(ocr_feats, context)
return ocr_feats,
def compute_hrnet_feats(self, x, additional_features, return_list=False):
x = self.compute_pre_stage_features(x, additional_features)
x = self.layer1(x)
x_list = []
for i in range(self.stage2_num_branches):
if self.transition1[i] is not None:
x_list.append(self.transition1[i](x))
else:
x_list.append(x)
y_list = self.stage2(x_list)
x_list = []
for i in range(self.stage3_num_branches):
if self.transition2[i] is not None:
if i < self.stage2_num_branches:
x_list.append(self.transition2[i](y_list[i]))
else:
x_list.append(self.transition2[i](y_list[-1]))
else:
x_list.append(y_list[i])
y_list = self.stage3(x_list)
x_list = []
for i in range(self.stage4_num_branches):
if self.transition3[i] is not None:
if i < self.stage3_num_branches:
x_list.append(self.transition3[i](y_list[i]))
else:
x_list.append(self.transition3[i](y_list[-1]))
else:
x_list.append(y_list[i])
x = self.stage4(x_list)
if return_list:
return x
# Upsampling
x0_h, x0_w = x[0].size(2), x[0].size(3)
x1 = F.interpolate(x[1], size=(x0_h, x0_w),
mode='bilinear', align_corners=self.align_corners)
x2 = F.interpolate(x[2], size=(x0_h, x0_w),
mode='bilinear', align_corners=self.align_corners)
x3 = F.interpolate(x[3], size=(x0_h, x0_w),
mode='bilinear', align_corners=self.align_corners)
return torch.cat([x[0], x1, x2, x3], 1)
def compute_pre_stage_features(self, x, additional_features):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
if additional_features is not None:
x = x + additional_features
x = self.conv2(x)
x = self.bn2(x)
return self.relu(x)
def load_pretrained_weights(self, pretrained_path=''):
model_dict = self.state_dict()
if not os.path.exists(pretrained_path):
print(f'\nFile "{pretrained_path}" does not exist.')
print('You need to specify the correct path to the pre-trained weights.\n'
'You can download the weights for HRNet from the repository:\n'
'https://github.com/HRNet/HRNet-Image-Classification')
exit(1)
pretrained_dict = torch.load(pretrained_path, map_location={'cuda:0': 'cpu'})
pretrained_dict = {k.replace('last_layer', 'aux_head').replace('model.', ''): v for k, v in
pretrained_dict.items()}
params_count = len(pretrained_dict)
pretrained_dict = {k: v for k, v in pretrained_dict.items()
if k in model_dict.keys()}
# print(f'Loaded {len(pretrained_dict)} of {params_count} pretrained parameters for HRNet')
model_dict.update(pretrained_dict)
self.load_state_dict(model_dict)
|