File size: 10,805 Bytes
033bd8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import torch
import torch.nn as nn
GLUON_RESNET_TORCH_HUB = 'rwightman/pytorch-pretrained-gluonresnet'


class BasicBlockV1b(nn.Module):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None,
                 previous_dilation=1, norm_layer=nn.BatchNorm2d):
        super(BasicBlockV1b, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride,
                               padding=dilation, dilation=dilation, bias=False)
        self.bn1 = norm_layer(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1,
                               padding=previous_dilation, dilation=previous_dilation, bias=False)
        self.bn2 = norm_layer(planes)

        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out = out + residual
        out = self.relu(out)

        return out


class BottleneckV1b(nn.Module):
    expansion = 4

    def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None,
                 previous_dilation=1, norm_layer=nn.BatchNorm2d):
        super(BottleneckV1b, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
        self.bn1 = norm_layer(planes)

        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
                               padding=dilation, dilation=dilation, bias=False)
        self.bn2 = norm_layer(planes)

        self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
        self.bn3 = norm_layer(planes * self.expansion)

        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out = out + residual
        out = self.relu(out)

        return out


class ResNetV1b(nn.Module):
    """ Pre-trained ResNetV1b Model, which produces the strides of 8 featuremaps at conv5.

    Parameters
    ----------
    block : Block
        Class for the residual block. Options are BasicBlockV1, BottleneckV1.
    layers : list of int
        Numbers of layers in each block
    classes : int, default 1000
        Number of classification classes.
    dilated : bool, default False
        Applying dilation strategy to pretrained ResNet yielding a stride-8 model,
        typically used in Semantic Segmentation.
    norm_layer : object
        Normalization layer used (default: :class:`nn.BatchNorm2d`)
    deep_stem : bool, default False
        Whether to replace the 7x7 conv1 with 3 3x3 convolution layers.
    avg_down : bool, default False
        Whether to use average pooling for projection skip connection between stages/downsample.
    final_drop : float, default 0.0
        Dropout ratio before the final classification layer.

    Reference:
        - He, Kaiming, et al. "Deep residual learning for image recognition."
        Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

        - Yu, Fisher, and Vladlen Koltun. "Multi-scale context aggregation by dilated convolutions."
    """
    def __init__(self, block, layers, classes=1000, dilated=True, deep_stem=False, stem_width=32,
                 avg_down=False, final_drop=0.0, norm_layer=nn.BatchNorm2d):
        self.inplanes = stem_width*2 if deep_stem else 64
        super(ResNetV1b, self).__init__()
        if not deep_stem:
            self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
        else:
            self.conv1 = nn.Sequential(
                nn.Conv2d(3, stem_width, kernel_size=3, stride=2, padding=1, bias=False),
                norm_layer(stem_width),
                nn.ReLU(True),
                nn.Conv2d(stem_width, stem_width, kernel_size=3, stride=1, padding=1, bias=False),
                norm_layer(stem_width),
                nn.ReLU(True),
                nn.Conv2d(stem_width, 2*stem_width, kernel_size=3, stride=1, padding=1, bias=False)
            )
        self.bn1 = norm_layer(self.inplanes)
        self.relu = nn.ReLU(True)
        self.maxpool = nn.MaxPool2d(3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0], avg_down=avg_down,
                                       norm_layer=norm_layer)
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2, avg_down=avg_down,
                                       norm_layer=norm_layer)
        if dilated:
            self.layer3 = self._make_layer(block, 256, layers[2], stride=1, dilation=2,
                                           avg_down=avg_down, norm_layer=norm_layer)
            self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=4,
                                           avg_down=avg_down, norm_layer=norm_layer)
        else:
            self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
                                           avg_down=avg_down, norm_layer=norm_layer)
            self.layer4 = self._make_layer(block, 512, layers[3], stride=2,
                                           avg_down=avg_down, norm_layer=norm_layer)
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.drop = None
        if final_drop > 0.0:
            self.drop = nn.Dropout(final_drop)
        self.fc = nn.Linear(512 * block.expansion, classes)

    def _make_layer(self, block, planes, blocks, stride=1, dilation=1,
                    avg_down=False, norm_layer=nn.BatchNorm2d):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = []
            if avg_down:
                if dilation == 1:
                    downsample.append(
                        nn.AvgPool2d(kernel_size=stride, stride=stride, ceil_mode=True, count_include_pad=False)
                    )
                else:
                    downsample.append(
                        nn.AvgPool2d(kernel_size=1, stride=1, ceil_mode=True, count_include_pad=False)
                    )
                downsample.extend([
                    nn.Conv2d(self.inplanes, out_channels=planes * block.expansion,
                              kernel_size=1, stride=1, bias=False),
                    norm_layer(planes * block.expansion)
                ])
                downsample = nn.Sequential(*downsample)
            else:
                downsample = nn.Sequential(
                    nn.Conv2d(self.inplanes, out_channels=planes * block.expansion,
                              kernel_size=1, stride=stride, bias=False),
                    norm_layer(planes * block.expansion)
                )

        layers = []
        if dilation in (1, 2):
            layers.append(block(self.inplanes, planes, stride, dilation=1, downsample=downsample,
                                previous_dilation=dilation, norm_layer=norm_layer))
        elif dilation == 4:
            layers.append(block(self.inplanes, planes, stride, dilation=2, downsample=downsample,
                                previous_dilation=dilation, norm_layer=norm_layer))
        else:
            raise RuntimeError("=> unknown dilation size: {}".format(dilation))

        self.inplanes = planes * block.expansion
        for _ in range(1, blocks):
            layers.append(block(self.inplanes, planes, dilation=dilation,
                                previous_dilation=dilation, norm_layer=norm_layer))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
        x = x.view(x.size(0), -1)
        if self.drop is not None:
            x = self.drop(x)
        x = self.fc(x)

        return x


def _safe_state_dict_filtering(orig_dict, model_dict_keys):
    filtered_orig_dict = {}
    for k, v in orig_dict.items():
        if k in model_dict_keys:
            filtered_orig_dict[k] = v
        else:
            print(f"[ERROR] Failed to load <{k}> in backbone")
    return filtered_orig_dict


def resnet34_v1b(pretrained=False, **kwargs):
    model = ResNetV1b(BasicBlockV1b, [3, 4, 6, 3], **kwargs)
    if pretrained:
        model_dict = model.state_dict()
        filtered_orig_dict = _safe_state_dict_filtering(
            torch.hub.load(GLUON_RESNET_TORCH_HUB, 'gluon_resnet34_v1b', pretrained=True).state_dict(),
            model_dict.keys()
        )
        model_dict.update(filtered_orig_dict)
        model.load_state_dict(model_dict)
    return model


def resnet50_v1s(pretrained=False, **kwargs):
    model = ResNetV1b(BottleneckV1b, [3, 4, 6, 3], deep_stem=True, stem_width=64, **kwargs)
    if pretrained:
        model_dict = model.state_dict()
        filtered_orig_dict = _safe_state_dict_filtering(
            torch.hub.load(GLUON_RESNET_TORCH_HUB, 'gluon_resnet50_v1s', pretrained=True).state_dict(),
            model_dict.keys()
        )
        model_dict.update(filtered_orig_dict)
        model.load_state_dict(model_dict)
    return model


def resnet101_v1s(pretrained=False, **kwargs):
    model = ResNetV1b(BottleneckV1b, [3, 4, 23, 3], deep_stem=True, stem_width=64, **kwargs)
    if pretrained:
        model_dict = model.state_dict()
        filtered_orig_dict = _safe_state_dict_filtering(
            torch.hub.load(GLUON_RESNET_TORCH_HUB, 'gluon_resnet101_v1s', pretrained=True).state_dict(),
            model_dict.keys()
        )
        model_dict.update(filtered_orig_dict)
        model.load_state_dict(model_dict)
    return model


def resnet152_v1s(pretrained=False, **kwargs):
    model = ResNetV1b(BottleneckV1b, [3, 8, 36, 3], deep_stem=True, stem_width=64, **kwargs)
    if pretrained:
        model_dict = model.state_dict()
        filtered_orig_dict = _safe_state_dict_filtering(
            torch.hub.load(GLUON_RESNET_TORCH_HUB, 'gluon_resnet152_v1s', pretrained=True).state_dict(),
            model_dict.keys()
        )
        model_dict.update(filtered_orig_dict)
        model.load_state_dict(model_dict)
    return model