Spaces:
Running
Running
File size: 10,805 Bytes
033bd8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import torch
import torch.nn as nn
GLUON_RESNET_TORCH_HUB = 'rwightman/pytorch-pretrained-gluonresnet'
class BasicBlockV1b(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None,
previous_dilation=1, norm_layer=nn.BatchNorm2d):
super(BasicBlockV1b, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride,
padding=dilation, dilation=dilation, bias=False)
self.bn1 = norm_layer(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1,
padding=previous_dilation, dilation=previous_dilation, bias=False)
self.bn2 = norm_layer(planes)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out = out + residual
out = self.relu(out)
return out
class BottleneckV1b(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None,
previous_dilation=1, norm_layer=nn.BatchNorm2d):
super(BottleneckV1b, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = norm_layer(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=dilation, dilation=dilation, bias=False)
self.bn2 = norm_layer(planes)
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
self.bn3 = norm_layer(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out = out + residual
out = self.relu(out)
return out
class ResNetV1b(nn.Module):
""" Pre-trained ResNetV1b Model, which produces the strides of 8 featuremaps at conv5.
Parameters
----------
block : Block
Class for the residual block. Options are BasicBlockV1, BottleneckV1.
layers : list of int
Numbers of layers in each block
classes : int, default 1000
Number of classification classes.
dilated : bool, default False
Applying dilation strategy to pretrained ResNet yielding a stride-8 model,
typically used in Semantic Segmentation.
norm_layer : object
Normalization layer used (default: :class:`nn.BatchNorm2d`)
deep_stem : bool, default False
Whether to replace the 7x7 conv1 with 3 3x3 convolution layers.
avg_down : bool, default False
Whether to use average pooling for projection skip connection between stages/downsample.
final_drop : float, default 0.0
Dropout ratio before the final classification layer.
Reference:
- He, Kaiming, et al. "Deep residual learning for image recognition."
Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
- Yu, Fisher, and Vladlen Koltun. "Multi-scale context aggregation by dilated convolutions."
"""
def __init__(self, block, layers, classes=1000, dilated=True, deep_stem=False, stem_width=32,
avg_down=False, final_drop=0.0, norm_layer=nn.BatchNorm2d):
self.inplanes = stem_width*2 if deep_stem else 64
super(ResNetV1b, self).__init__()
if not deep_stem:
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
else:
self.conv1 = nn.Sequential(
nn.Conv2d(3, stem_width, kernel_size=3, stride=2, padding=1, bias=False),
norm_layer(stem_width),
nn.ReLU(True),
nn.Conv2d(stem_width, stem_width, kernel_size=3, stride=1, padding=1, bias=False),
norm_layer(stem_width),
nn.ReLU(True),
nn.Conv2d(stem_width, 2*stem_width, kernel_size=3, stride=1, padding=1, bias=False)
)
self.bn1 = norm_layer(self.inplanes)
self.relu = nn.ReLU(True)
self.maxpool = nn.MaxPool2d(3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0], avg_down=avg_down,
norm_layer=norm_layer)
self.layer2 = self._make_layer(block, 128, layers[1], stride=2, avg_down=avg_down,
norm_layer=norm_layer)
if dilated:
self.layer3 = self._make_layer(block, 256, layers[2], stride=1, dilation=2,
avg_down=avg_down, norm_layer=norm_layer)
self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=4,
avg_down=avg_down, norm_layer=norm_layer)
else:
self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
avg_down=avg_down, norm_layer=norm_layer)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2,
avg_down=avg_down, norm_layer=norm_layer)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.drop = None
if final_drop > 0.0:
self.drop = nn.Dropout(final_drop)
self.fc = nn.Linear(512 * block.expansion, classes)
def _make_layer(self, block, planes, blocks, stride=1, dilation=1,
avg_down=False, norm_layer=nn.BatchNorm2d):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = []
if avg_down:
if dilation == 1:
downsample.append(
nn.AvgPool2d(kernel_size=stride, stride=stride, ceil_mode=True, count_include_pad=False)
)
else:
downsample.append(
nn.AvgPool2d(kernel_size=1, stride=1, ceil_mode=True, count_include_pad=False)
)
downsample.extend([
nn.Conv2d(self.inplanes, out_channels=planes * block.expansion,
kernel_size=1, stride=1, bias=False),
norm_layer(planes * block.expansion)
])
downsample = nn.Sequential(*downsample)
else:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, out_channels=planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
norm_layer(planes * block.expansion)
)
layers = []
if dilation in (1, 2):
layers.append(block(self.inplanes, planes, stride, dilation=1, downsample=downsample,
previous_dilation=dilation, norm_layer=norm_layer))
elif dilation == 4:
layers.append(block(self.inplanes, planes, stride, dilation=2, downsample=downsample,
previous_dilation=dilation, norm_layer=norm_layer))
else:
raise RuntimeError("=> unknown dilation size: {}".format(dilation))
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes, dilation=dilation,
previous_dilation=dilation, norm_layer=norm_layer))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
if self.drop is not None:
x = self.drop(x)
x = self.fc(x)
return x
def _safe_state_dict_filtering(orig_dict, model_dict_keys):
filtered_orig_dict = {}
for k, v in orig_dict.items():
if k in model_dict_keys:
filtered_orig_dict[k] = v
else:
print(f"[ERROR] Failed to load <{k}> in backbone")
return filtered_orig_dict
def resnet34_v1b(pretrained=False, **kwargs):
model = ResNetV1b(BasicBlockV1b, [3, 4, 6, 3], **kwargs)
if pretrained:
model_dict = model.state_dict()
filtered_orig_dict = _safe_state_dict_filtering(
torch.hub.load(GLUON_RESNET_TORCH_HUB, 'gluon_resnet34_v1b', pretrained=True).state_dict(),
model_dict.keys()
)
model_dict.update(filtered_orig_dict)
model.load_state_dict(model_dict)
return model
def resnet50_v1s(pretrained=False, **kwargs):
model = ResNetV1b(BottleneckV1b, [3, 4, 6, 3], deep_stem=True, stem_width=64, **kwargs)
if pretrained:
model_dict = model.state_dict()
filtered_orig_dict = _safe_state_dict_filtering(
torch.hub.load(GLUON_RESNET_TORCH_HUB, 'gluon_resnet50_v1s', pretrained=True).state_dict(),
model_dict.keys()
)
model_dict.update(filtered_orig_dict)
model.load_state_dict(model_dict)
return model
def resnet101_v1s(pretrained=False, **kwargs):
model = ResNetV1b(BottleneckV1b, [3, 4, 23, 3], deep_stem=True, stem_width=64, **kwargs)
if pretrained:
model_dict = model.state_dict()
filtered_orig_dict = _safe_state_dict_filtering(
torch.hub.load(GLUON_RESNET_TORCH_HUB, 'gluon_resnet101_v1s', pretrained=True).state_dict(),
model_dict.keys()
)
model_dict.update(filtered_orig_dict)
model.load_state_dict(model_dict)
return model
def resnet152_v1s(pretrained=False, **kwargs):
model = ResNetV1b(BottleneckV1b, [3, 8, 36, 3], deep_stem=True, stem_width=64, **kwargs)
if pretrained:
model_dict = model.state_dict()
filtered_orig_dict = _safe_state_dict_filtering(
torch.hub.load(GLUON_RESNET_TORCH_HUB, 'gluon_resnet152_v1s', pretrained=True).state_dict(),
model_dict.keys()
)
model_dict.update(filtered_orig_dict)
model.load_state_dict(model_dict)
return model
|