Spaces:
Running
Running
File size: 16,439 Bytes
6710c89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
import os
import time
import datetime
import torch
import torchvision
from utils import misc, metrics
best_psnr = 0
def train(train_loader, val_loader, model, optimizer, scheduler, loss_fn, logger, opt):
total_step = opt.epochs * len(train_loader)
step_time_log = misc.AverageMeter()
loss_log = misc.AverageMeter(':6f')
loss_fg_content_bg_appearance_construct_log = misc.AverageMeter(':6f')
loss_lut_transform_image_log = misc.AverageMeter(':6f')
loss_lut_regularize_log = misc.AverageMeter(':6f')
start_epoch = 0
"Load pretrained checkpoints"
if opt.pretrained is not None:
logger.info(f"Load pretrained weight from {opt.pretrained}")
load_state = torch.load(opt.pretrained)
model = model.cpu()
model.load_state_dict(load_state['model'])
model = model.to(opt.device)
optimizer.load_state_dict(load_state['optimizer'])
scheduler.load_state_dict(load_state['scheduler'])
start_epoch = load_state['last_epoch'] + 1
for epoch in range(start_epoch, opt.epochs):
model.train()
time_ckp = time.time()
for step, batch in enumerate(train_loader):
current_step = epoch * len(train_loader) + step + 1
if opt.INRDecode and opt.hr_train:
"List with 4 elements: [Input to Encoder, three different resolutions' crop to INR Decoder]"
composite_image = [batch[f'composite_image{name}'].to(opt.device) for name in range(4)]
real_image = [batch[f'real_image{name}'].to(opt.device) for name in range(4)]
mask = [batch[f'mask{name}'].to(opt.device) for name in range(4)]
coordinate_map = [batch[f'coordinate_map{name}'].to(opt.device) for name in range(4)]
fg_INR_coordinates = coordinate_map[1:]
else:
composite_image = batch['composite_image'].to(opt.device)
real_image = batch['real_image'].to(opt.device)
mask = batch['mask'].to(opt.device)
fg_INR_coordinates = batch['fg_INR_coordinates'].to(opt.device)
fg_content_bg_appearance_construct, fit_lut3d, lut_transform_image = model(
composite_image, mask, fg_INR_coordinates)
if opt.INRDecode:
loss_fg_content_bg_appearance_construct = 0
"""
Our LRIP module requires three different resolution layers, thus here
`loss_fg_content_bg_appearance_construct` is calculated in multiple layers.
Besides, when leverage `hr_train`, i.e. use RSC strategy (See Section 3.4), the `real_image`
and `mask` are list type, corresponding different resolutions' crop.
"""
if opt.hr_train:
for n in range(3):
loss_fg_content_bg_appearance_construct += loss_fn['masked_mse'] \
(fg_content_bg_appearance_construct[n], real_image[3 - n], mask[3 - n])
loss_fg_content_bg_appearance_construct /= 3
loss_lut_transform_image = loss_fn['masked_mse'](lut_transform_image, real_image[1], mask[1])
else:
for n in range(3):
loss_fg_content_bg_appearance_construct += loss_fn['MaskWeightedMSE'] \
(fg_content_bg_appearance_construct[n],
torchvision.transforms.Resize(opt.INR_input_size // 2 ** (3 - n - 1))(real_image),
torchvision.transforms.Resize(opt.INR_input_size // 2 ** (3 - n - 1))(mask))
loss_fg_content_bg_appearance_construct /= 3
loss_lut_transform_image = loss_fn['masked_mse'](lut_transform_image, real_image, mask)
loss_lut_regularize = loss_fn['regularize_LUT'](fit_lut3d)
else:
loss_fg_content_bg_appearance_construct = 0
loss_lut_transform_image = loss_fn['masked_mse'](lut_transform_image, real_image, mask)
loss_lut_regularize = 0
loss = loss_fg_content_bg_appearance_construct + loss_lut_transform_image + loss_lut_regularize
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
step_time_log.update(time.time() - time_ckp)
loss_fg_content_bg_appearance_construct_log.update(0 if isinstance(loss_fg_content_bg_appearance_construct,
int) else loss_fg_content_bg_appearance_construct.item())
loss_lut_transform_image_log.update(
0 if isinstance(loss_lut_transform_image, int) else loss_lut_transform_image.item())
loss_lut_regularize_log.update(0 if isinstance(loss_lut_regularize, int) else loss_lut_regularize.item())
loss_log.update(loss.item())
if current_step % opt.print_freq == 0:
remain_secs = (total_step - current_step) * step_time_log.avg
remain_time = datetime.timedelta(seconds=round(remain_secs))
finish_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time() + remain_secs))
log_msg = f'Epoch: [{epoch}/{opt.epochs}]\t' \
f'Step: [{step}/{len(train_loader)}]\t' \
f'StepTime {step_time_log.val:.3f} ({step_time_log.avg:.3f})\t' \
f'lr {optimizer.param_groups[0]["lr"]}\t' \
f'Loss {loss_log.val:.4f} ({loss_log.avg:.4f})\t' \
f'Loss_fg_bg_cons {loss_fg_content_bg_appearance_construct_log.val:.4f} ({loss_fg_content_bg_appearance_construct_log.avg:.4f})\t' \
f'Loss_lut_trans {loss_lut_transform_image_log.val:.4f} ({loss_lut_transform_image_log.avg:.4f})\t' \
f'Loss_lut_reg {loss_lut_regularize_log.val:.4f} ({loss_lut_regularize_log.avg:.4f})\t' \
f'Remaining Time {remain_time} ({finish_time})'
logger.info(log_msg)
if opt.wandb:
import wandb
wandb.log(
{'Train/Epoch': epoch, 'Train/lr': optimizer.param_groups[0]['lr'], 'Train/Step': current_step,
'Train/Loss': loss_log.val,
'Train/Loss_fg_bg_cons': loss_fg_content_bg_appearance_construct_log.val,
'Train/Loss_lut_trans': loss_lut_transform_image_log.val,
'Train/Loss_lut_reg': loss_lut_regularize_log.val,
})
time_ckp = time.time()
state = {'model': model.state_dict(), 'optimizer': optimizer.state_dict(), 'last_epoch': epoch,
'scheduler': scheduler.state_dict()}
"""
As the validation of original resolution Harmonization will have no consistent resolution among images
(so fail to form a batch) and also may lead to out-of-memory problem when combined with training phase,
we here only save the model when `opt.isFullRes` is True, leaving the evaluation in `inference.py`.
"""
if opt.isFullRes and opt.hr_train:
if epoch % 5 == 0:
torch.save(state, os.path.join(opt.save_path, f"epoch{epoch}.pth"))
else:
torch.save(state, os.path.join(opt.save_path, "last.pth"))
else:
val(val_loader, model, logger, opt, state)
def val(val_loader, model, logger, opt, state):
global best_psnr
current_process = 10
model.eval()
metric_log = {
'HAdobe5k': {'Samples': 0, 'MSE': 0, 'fMSE': 0, 'PSNR': 0, 'SSIM': 0},
'HCOCO': {'Samples': 0, 'MSE': 0, 'fMSE': 0, 'PSNR': 0, 'SSIM': 0},
'Hday2night': {'Samples': 0, 'MSE': 0, 'fMSE': 0, 'PSNR': 0, 'SSIM': 0},
'HFlickr': {'Samples': 0, 'MSE': 0, 'fMSE': 0, 'PSNR': 0, 'SSIM': 0},
'All': {'Samples': 0, 'MSE': 0, 'fMSE': 0, 'PSNR': 0, 'SSIM': 0},
}
lut_metric_log = {
'HAdobe5k': {'Samples': 0, 'MSE': 0, 'fMSE': 0, 'PSNR': 0, 'SSIM': 0},
'HCOCO': {'Samples': 0, 'MSE': 0, 'fMSE': 0, 'PSNR': 0, 'SSIM': 0},
'Hday2night': {'Samples': 0, 'MSE': 0, 'fMSE': 0, 'PSNR': 0, 'SSIM': 0},
'HFlickr': {'Samples': 0, 'MSE': 0, 'fMSE': 0, 'PSNR': 0, 'SSIM': 0},
'All': {'Samples': 0, 'MSE': 0, 'fMSE': 0, 'PSNR': 0, 'SSIM': 0},
}
for step, batch in enumerate(val_loader):
composite_image = batch['composite_image'].to(opt.device)
real_image = batch['real_image'].to(opt.device)
mask = batch['mask'].to(opt.device)
category = batch['category']
fg_INR_coordinates = batch['fg_INR_coordinates'].to(opt.device)
bg_INR_coordinates = batch['bg_INR_coordinates'].to(opt.device)
fg_transfer_INR_RGB = batch['fg_transfer_INR_RGB'].to(opt.device)
with torch.no_grad():
fg_content_bg_appearance_construct, _, lut_transform_image = model(
composite_image,
mask,
fg_INR_coordinates,
bg_INR_coordinates)
if opt.INRDecode:
pred_fg_image = fg_content_bg_appearance_construct[-1]
else:
pred_fg_image = None
fg_transfer_INR_RGB = misc.lin2img(fg_transfer_INR_RGB,
val_loader.dataset.INR_dataset.size) if fg_transfer_INR_RGB is not None else None
"For INR"
mask_INR = torchvision.transforms.Resize(opt.INR_input_size)(mask)
if not opt.INRDecode:
pred_harmonized_image = None
else:
pred_harmonized_image = pred_fg_image * (mask > 100 / 255.) + real_image * (~(mask > 100 / 255.))
lut_transform_image = lut_transform_image * (mask > 100 / 255.) + real_image * (~(mask > 100 / 255.))
"Save the output images. For every 10 epochs, save more results, otherwise, save little. Thus save storage."
if state['last_epoch'] % 10 == 0:
misc.visualize(real_image, composite_image, mask, pred_fg_image,
pred_harmonized_image, lut_transform_image, opt, state['last_epoch'], show=False,
wandb=opt.wandb, isAll=True, step=step)
elif step == 0:
misc.visualize(real_image, composite_image, mask, pred_fg_image,
pred_harmonized_image, lut_transform_image, opt, state['last_epoch'], show=False,
wandb=opt.wandb, step=step)
if opt.INRDecode:
mse, fmse, psnr, ssim = metrics.calc_metrics(misc.normalize(pred_harmonized_image, opt, 'inv'),
misc.normalize(fg_transfer_INR_RGB, opt, 'inv'), mask_INR)
lut_mse, lut_fmse, lut_psnr, lut_ssim = metrics.calc_metrics(misc.normalize(lut_transform_image, opt, 'inv'),
misc.normalize(real_image, opt, 'inv'), mask)
for idx in range(len(category)):
if opt.INRDecode:
metric_log[category[idx]]['Samples'] += 1
metric_log[category[idx]]['MSE'] += mse[idx]
metric_log[category[idx]]['fMSE'] += fmse[idx]
metric_log[category[idx]]['PSNR'] += psnr[idx]
metric_log[category[idx]]['SSIM'] += ssim[idx]
metric_log['All']['Samples'] += 1
metric_log['All']['MSE'] += mse[idx]
metric_log['All']['fMSE'] += fmse[idx]
metric_log['All']['PSNR'] += psnr[idx]
metric_log['All']['SSIM'] += ssim[idx]
lut_metric_log[category[idx]]['Samples'] += 1
lut_metric_log[category[idx]]['MSE'] += lut_mse[idx]
lut_metric_log[category[idx]]['fMSE'] += lut_fmse[idx]
lut_metric_log[category[idx]]['PSNR'] += lut_psnr[idx]
lut_metric_log[category[idx]]['SSIM'] += lut_ssim[idx]
lut_metric_log['All']['Samples'] += 1
lut_metric_log['All']['MSE'] += lut_mse[idx]
lut_metric_log['All']['fMSE'] += lut_fmse[idx]
lut_metric_log['All']['PSNR'] += lut_psnr[idx]
lut_metric_log['All']['SSIM'] += lut_ssim[idx]
if (step + 1) / len(val_loader) * 100 >= current_process:
logger.info(f'Processing: {current_process}')
current_process += 10
logger.info('=========================')
for key in metric_log.keys():
if opt.INRDecode:
msg = f"{key}-'MSE': {metric_log[key]['MSE'] / metric_log[key]['Samples']:.2f}\n" \
f"{key}-'fMSE': {metric_log[key]['fMSE'] / metric_log[key]['Samples']:.2f}\n" \
f"{key}-'PSNR': {metric_log[key]['PSNR'] / metric_log[key]['Samples']:.2f}\n" \
f"{key}-'SSIM': {metric_log[key]['SSIM'] / metric_log[key]['Samples']:.4f}\n" \
f"{key}-'LUT_MSE': {lut_metric_log[key]['MSE'] / lut_metric_log[key]['Samples']:.2f}\n" \
f"{key}-'LUT_fMSE': {lut_metric_log[key]['fMSE'] / lut_metric_log[key]['Samples']:.2f}\n" \
f"{key}-'LUT_PSNR': {lut_metric_log[key]['PSNR'] / lut_metric_log[key]['Samples']:.2f}\n" \
f"{key}-'LUT_SSIM': {lut_metric_log[key]['SSIM'] / lut_metric_log[key]['Samples']:.4f}\n"
else:
msg = f"{key}-'LUT_MSE': {lut_metric_log[key]['MSE'] / lut_metric_log[key]['Samples']:.2f}\n" \
f"{key}-'LUT_fMSE': {lut_metric_log[key]['fMSE'] / lut_metric_log[key]['Samples']:.2f}\n" \
f"{key}-'LUT_PSNR': {lut_metric_log[key]['PSNR'] / lut_metric_log[key]['Samples']:.2f}\n" \
f"{key}-'LUT_SSIM': {lut_metric_log[key]['SSIM'] / lut_metric_log[key]['Samples']:.4f}\n"
logger.info(msg)
if opt.wandb:
import wandb
if opt.INRDecode:
wandb.log(
{f'Val/{key}/Epoch': state['last_epoch'],
f'Val/{key}/MSE': metric_log[key]['MSE'] / metric_log[key]['Samples'],
f'Val/{key}/fMSE': metric_log[key]['fMSE'] / metric_log[key]['Samples'],
f'Val/{key}/PSNR': metric_log[key]['PSNR'] / metric_log[key]['Samples'],
f'Val/{key}/SSIM': metric_log[key]['SSIM'] / metric_log[key]['Samples'],
f'Val/{key}/LUT_MSE': lut_metric_log[key]['MSE'] / lut_metric_log[key]['Samples'],
f'Val/{key}/LUT_fMSE': lut_metric_log[key]['fMSE'] / lut_metric_log[key]['Samples'],
f'Val/{key}/LUT_PSNR': lut_metric_log[key]['PSNR'] / lut_metric_log[key]['Samples'],
f'Val/{key}/LUT_SSIM': lut_metric_log[key]['SSIM'] / lut_metric_log[key]['Samples']
})
else:
wandb.log(
{f'Val/{key}/Epoch': state['last_epoch'],
f'Val/{key}/LUT_MSE': lut_metric_log[key]['MSE'] / lut_metric_log[key]['Samples'],
f'Val/{key}/LUT_fMSE': lut_metric_log[key]['fMSE'] / lut_metric_log[key]['Samples'],
f'Val/{key}/LUT_PSNR': lut_metric_log[key]['PSNR'] / lut_metric_log[key]['Samples'],
f'Val/{key}/LUT_SSIM': lut_metric_log[key]['SSIM'] / lut_metric_log[key]['Samples']
})
logger.info('=========================')
if not opt.INRDecode:
if lut_metric_log['All']['PSNR'] / lut_metric_log['All']['Samples'] > best_psnr:
logger.info("Best Save!")
best_psnr = lut_metric_log['All']['PSNR'] / lut_metric_log['All']['Samples']
torch.save(state, os.path.join(opt.save_path, "best.pth"))
else:
logger.info("Last Save!")
torch.save(state, os.path.join(opt.save_path, "last.pth"))
else:
if metric_log['All']['PSNR'] / metric_log['All']['Samples'] > best_psnr:
logger.info("Best Save!")
best_psnr = metric_log['All']['PSNR'] / metric_log['All']['Samples']
torch.save(state, os.path.join(opt.save_path, "best.pth"))
else:
logger.info("Last Save!")
torch.save(state, os.path.join(opt.save_path, "last.pth"))
|