File size: 15,385 Bytes
033bd8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
import re
from pathlib import Path
import glob
import logging
import numpy as np
import torch
import cv2
import os
import math
from adamp import AdamP
import random
import torch.nn as nn

_logger = None


def increment_path(path):
    # Increment path, i.e. runs/exp1 --> runs/exp{sep}1, runs/exp{sep}2 etc.
    res = re.search("\d+", path)
    if res is None:
        print("Set initial exp number!")
        exit(1)

    if not Path(path).exists():
        return str(path)
    else:
        path = path[:res.start()]
        dirs = glob.glob(f"{path}*")  # similar paths
        matches = [re.search(rf"%s(\d+)" % Path(path).stem, d) for d in dirs]
        i = [int(m.groups()[0]) for m in matches if m]  # indices
        n = max(i) + 1  # increment number
        return f"{path}{n}"  # update path


class AverageMeter(object):
    """Computes and stores the average and current value"""

    def __init__(self, fmt=':f'):
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count


def create_logger(log_file, level=logging.INFO):
    global _logger
    _logger = logging.getLogger()
    formatter = logging.Formatter(
        '[%(asctime)s][%(filename)15s][line:%(lineno)4d][%(levelname)8s] %(message)s')
    fh = logging.FileHandler(log_file)
    fh.setFormatter(formatter)
    sh = logging.StreamHandler()
    sh.setFormatter(formatter)
    _logger.setLevel(level)
    _logger.addHandler(fh)
    _logger.addHandler(sh)

    return _logger


def get_mgrid(sidelen, dim=2):
    '''Generates a flattened grid of (x,y,...) coordinates in a range of -1 to 1.'''
    if isinstance(sidelen, int):
        sidelen = dim * (sidelen,)

    if dim == 2:
        pixel_coords = np.stack(np.mgrid[:sidelen[0], :sidelen[1]], axis=-1)[None, ...].astype(np.float32)
        pixel_coords[0, :, :, 0] = pixel_coords[0, :, :, 0] / (sidelen[0] - 1)
        pixel_coords[0, :, :, 1] = pixel_coords[0, :, :, 1] / (sidelen[1] - 1)
    elif dim == 3:
        pixel_coords = np.stack(np.mgrid[:sidelen[0], :sidelen[1], :sidelen[2]], axis=-1)[None, ...].astype(np.float32)
        pixel_coords[..., 0] = pixel_coords[..., 0] / max(sidelen[0] - 1, 1)
        pixel_coords[..., 1] = pixel_coords[..., 1] / (sidelen[1] - 1)
        pixel_coords[..., 2] = pixel_coords[..., 2] / (sidelen[2] - 1)
    else:
        raise NotImplementedError('Not implemented for dim=%d' % dim)

    pixel_coords -= 0.5
    pixel_coords *= 2.
    pixel_coords = torch.Tensor(pixel_coords).view(-1, dim)
    return pixel_coords


def lin2img(tensor, image_resolution=None):
    batch_size, num_samples, channels = tensor.shape
    if image_resolution is None:
        width = np.sqrt(num_samples).astype(int)
        height = width
    else:
        if isinstance(image_resolution, int):
            image_resolution = (image_resolution, image_resolution)
        height = image_resolution[0]
        width = image_resolution[1]

    return tensor.permute(0, 2, 1).contiguous().view(batch_size, channels, height, width)


def normalize(x, opt, mode='normal'):
    device = x.device
    mean = torch.tensor(np.array(opt.transform_mean), dtype=x.dtype)[np.newaxis, :, np.newaxis, np.newaxis].to(device)
    var = torch.tensor(np.array(opt.transform_var), dtype=x.dtype)[np.newaxis, :, np.newaxis, np.newaxis].to(device)
    if mode == 'normal':
        return (x - mean) / var
    elif mode == 'inv':
        return x * var + mean


def prepare_cooridinate_input(mask, dim=2):
    '''Generates a flattened grid of (x,y,...) coordinates in a range of -1 to 1.'''
    if mask.shape[0] == mask.shape[1]:
        sidelen = mask.shape[0]
    else:
        sidelen = mask.shape[:2]

    if isinstance(sidelen, int):
        sidelen = dim * (sidelen,)

    if dim == 2:
        pixel_coords = np.stack(np.mgrid[:sidelen[0], :sidelen[1]], axis=-1)[None, ...].astype(np.float32)
        pixel_coords[0, :, :, 0] = pixel_coords[0, :, :, 0] / (sidelen[0] - 1)
        pixel_coords[0, :, :, 1] = pixel_coords[0, :, :, 1] / (sidelen[1] - 1)
    elif dim == 3:
        pixel_coords = np.stack(np.mgrid[:sidelen[0], :sidelen[1], :sidelen[2]], axis=-1)[None, ...].astype(np.float32)
        pixel_coords[..., 0] = pixel_coords[..., 0] / max(sidelen[0] - 1, 1)
        pixel_coords[..., 1] = pixel_coords[..., 1] / (sidelen[1] - 1)
        pixel_coords[..., 2] = pixel_coords[..., 2] / (sidelen[2] - 1)
    else:
        raise NotImplementedError('Not implemented for dim=%d' % dim)

    pixel_coords -= 0.5
    pixel_coords *= 2.
    return pixel_coords.squeeze(0).transpose(2, 0, 1)


def visualize(real, composite, mask, pred_fg, pred_harmonized, lut_transform_image, opt, epoch,
              show=False, wandb=True, isAll=False, step=None):
    save_path = os.path.join(opt.save_path, "figs", str(epoch))
    os.makedirs(save_path, exist_ok=True)

    if isAll:
        final_index = 1

        """
            Uncomment the following code if you want to save all the results, otherwise will only save the first image
            of each batch
        """
        # final_index = len(real)
    else:
        final_index = 1

    for id in range(final_index):
        if show:
            cv2.imshow("pred_fg", normalize(pred_fg, opt, 'inv')[id].permute(1, 2, 0).cpu().numpy())
            cv2.imshow("real", normalize(real, opt, 'inv')[id].permute(1, 2, 0).cpu().numpy())
            cv2.imshow("lut_transform", normalize(lut_transform_image, opt, 'inv')[id].permute(1, 2, 0).cpu().numpy())
            cv2.imshow("composite", normalize(composite, opt, 'inv')[id].permute(1, 2, 0).cpu().numpy())
            cv2.imshow("mask", mask[id].permute(1, 2, 0).cpu().numpy())
            cv2.imshow("pred_harmonized_image",
                       normalize(pred_harmonized, opt, 'inv')[id].permute(1, 2, 0).cpu().numpy())
            cv2.waitKey()

        if not opt.INRDecode:
            real_tmp = cv2.cvtColor(
                normalize(real, opt, 'inv')[id].permute(1, 2, 0).cpu().mul_(255.).clamp_(0., 255.).numpy().astype(
                    np.uint8),
                cv2.COLOR_RGB2BGR)
            composite_tmp = cv2.cvtColor(
                normalize(composite, opt, 'inv')[id].permute(1, 2, 0).cpu().mul_(255.).clamp_(0., 255.).numpy().astype(
                    np.uint8), cv2.COLOR_RGB2BGR)
            mask_tmp = mask[id].permute(1, 2, 0).cpu().mul_(255.).clamp_(0., 255.).numpy().astype(np.uint8)
            lut_transform_image_tmp = cv2.cvtColor(
                normalize(lut_transform_image, opt, 'inv')[id].permute(1, 2, 0).cpu().mul_(255.).clamp_(
                    0., 255.).numpy().astype(np.uint8), cv2.COLOR_RGB2BGR)
        else:
            pred_fg_tmp = cv2.cvtColor(
                normalize(pred_fg, opt, 'inv')[id].permute(1, 2, 0).cpu().mul_(255.).clamp_(0., 255.).numpy().astype(
                    np.uint8), cv2.COLOR_RGB2BGR)
            real_tmp = cv2.cvtColor(
                normalize(real, opt, 'inv')[id].permute(1, 2, 0).cpu().mul_(255.).clamp_(0., 255.).numpy().astype(
                    np.uint8),
                cv2.COLOR_RGB2BGR)
            composite_tmp = cv2.cvtColor(
                normalize(composite, opt, 'inv')[id].permute(1, 2, 0).cpu().mul_(255.).clamp_(0., 255.).numpy().astype(
                    np.uint8), cv2.COLOR_RGB2BGR)
            lut_transform_image_tmp = cv2.cvtColor(
                normalize(lut_transform_image, opt, 'inv')[id].permute(1, 2, 0).cpu().mul_(255.).clamp_(
                    0., 255.).numpy().astype(np.uint8), cv2.COLOR_RGB2BGR)
            mask_tmp = mask[id].permute(1, 2, 0).cpu().mul_(255.).clamp_(0., 255.).numpy().astype(np.uint8)
            pred_harmonized_tmp = cv2.cvtColor(
                normalize(pred_harmonized, opt, 'inv')[id].permute(1, 2, 0).cpu().mul_(255.).clamp_(
                    0., 255.).numpy().astype(np.uint8), cv2.COLOR_RGB2BGR)

        if isAll:
            cv2.imwrite(os.path.join(save_path, f"{step}_{id}_composite.jpg"), composite_tmp)
            cv2.imwrite(os.path.join(save_path, f"{step}_{id}_real.jpg"), real_tmp)
            if opt.INRDecode:
                cv2.imwrite(os.path.join(save_path, f"{step}_{id}_pred_harmonized_image.jpg"), pred_harmonized_tmp)
            cv2.imwrite(os.path.join(save_path, f"{step}_{id}_lut_transform_image.jpg"), lut_transform_image_tmp)
            cv2.imwrite(os.path.join(save_path, f"{step}_{id}_mask.jpg"), mask_tmp)
        else:
            if not opt.INRDecode:
                cv2.imwrite(os.path.join(save_path, f"real_{step}_{id}.jpg"), real_tmp)
                cv2.imwrite(os.path.join(save_path, f"composite_{step}_{id}.jpg"), composite_tmp)
                cv2.imwrite(os.path.join(save_path, f"mask_{step}_{id}.jpg"), mask_tmp)
                cv2.imwrite(os.path.join(save_path, f"lut_transform_image_{step}_{id}.jpg"), lut_transform_image_tmp)
            else:
                cv2.imwrite(os.path.join(save_path, f"pred_fg_{step}_{id}.jpg"), pred_fg_tmp)
                cv2.imwrite(os.path.join(save_path, f"real_{step}_{id}.jpg"), real_tmp)
                cv2.imwrite(os.path.join(save_path, f"composite_{step}_{id}.jpg"), composite_tmp)
                cv2.imwrite(os.path.join(save_path, f"mask_{step}_{id}.jpg"), mask_tmp)
                cv2.imwrite(os.path.join(save_path, f"pred_harmonized_image_{step}_{id}.jpg"), pred_harmonized_tmp)
                cv2.imwrite(os.path.join(save_path, f"lut_transform_image_{step}_{id}.jpg"), lut_transform_image_tmp)

        "Only upload images of the first batch of the first epoch to save storage."
        if wandb and id == 0 and step == 0:
            import wandb
            real_tmp = wandb.Image(real_tmp, caption=epoch)
            composite_tmp = wandb.Image(composite_tmp, caption=epoch)
            if opt.INRDecode:
                pred_fg_tmp = wandb.Image(pred_fg_tmp, caption=epoch)
                pred_harmonized_tmp = wandb.Image(pred_harmonized_tmp, caption=epoch)
            lut_transform_image_tmp = wandb.Image(lut_transform_image_tmp, caption=epoch)
            mask_tmp = wandb.Image(mask_tmp, caption=epoch)
            if not opt.INRDecode:
                wandb.log(
                    {"pic/real": real_tmp, "pic/composite": composite_tmp,
                     "pic/mask": mask_tmp,
                     "pic/lut_trans": lut_transform_image_tmp,
                     "pic/epoch": epoch})
            else:
                wandb.log(
                    {"pic/pred_fg": pred_fg_tmp, "pic/real": real_tmp, "pic/composite": composite_tmp,
                     "pic/mask": mask_tmp,
                     "pic/lut_trans": lut_transform_image_tmp,
                     "pic/pred_harmonized": pred_harmonized_tmp,
                     "pic/epoch": epoch})
            wandb.log({})


def get_optimizer(model, opt_name, opt_kwargs):
    params = []
    base_lr = opt_kwargs['lr']
    for name, param in model.named_parameters():
        param_group = {'params': [param]}
        if not param.requires_grad:
            params.append(param_group)
            continue

        if not math.isclose(getattr(param, 'lr_mult', 1.0), 1.0):
            # print(f'Applied lr_mult={param.lr_mult} to "{name}" parameter.')
            param_group['lr'] = param_group.get('lr', base_lr) * param.lr_mult

        params.append(param_group)

    optimizer = {
        'sgd': torch.optim.SGD,
        'adam': torch.optim.Adam,
        'adamw': torch.optim.AdamW,
        'adamp': AdamP
    }[opt_name.lower()](params, **opt_kwargs)

    return optimizer


def improved_efficient_matmul(a, c, index, batch=256):
    """
    Reduce the unneed memory cost, but the speed is very slow.
    :param a: N * I * J
    :param b: N * J * K
    :return:  N * I * K
    """
    "The first can only support when a is not requires_grad_, and have high speed. While the second one supports "
    "whatever situations, but speed is quite slow. More Details in "
    "https://discuss.pytorch.org/t/many-weird-phenomena-about-torch-matmul-operation/158208"

    # out = torch.cat(
    #     [torch.matmul(a[i * batch:i * batch + batch, :, :], c[index[i * batch:i * batch + batch], :, :]) for i in
    #      range(a.shape[0] // batch)], dim=0)

    batch = 1
    out = torch.cat(
        [torch.matmul(a[i * batch:i * batch + batch, :, :], c[index[i * batch], :, :]) for i in
         range(a.shape[0] // batch)], dim=0)

    return out


class LRMult(object):
    def __init__(self, lr_mult=1.):
        self.lr_mult = lr_mult

    def __call__(self, m):
        if getattr(m, 'weight', None) is not None:
            m.weight.lr_mult = self.lr_mult
        if getattr(m, 'bias', None) is not None:
            m.bias.lr_mult = self.lr_mult


def customRandomCrop(objects, crop_height, crop_width, h_start=None, w_start=None):
    if h_start is None:
        h_start = random.random()
    if w_start is None:
        w_start = random.random()
    if isinstance(objects, list):
        out = []
        for obj in objects:
            out.append(random_crop(obj, crop_height, crop_width, h_start, w_start))

    else:
        out = random_crop(objects, crop_height, crop_width, h_start, w_start)

    return out, h_start, w_start


def get_random_crop_coords(height: int, width: int, crop_height: int, crop_width: int, h_start: float,
                           w_start: float):
    y1 = int((height - crop_height) * h_start)
    y2 = y1 + crop_height
    x1 = int((width - crop_width) * w_start)
    x2 = x1 + crop_width
    return x1, y1, x2, y2


def random_crop(img: np.ndarray, crop_height: int, crop_width: int, h_start: float, w_start: float):
    height, width = img.shape[:2]
    if height < crop_height or width < crop_width:
        raise ValueError(
            "Requested crop size ({crop_height}, {crop_width}) is "
            "larger than the image size ({height}, {width})".format(
                crop_height=crop_height, crop_width=crop_width, height=height, width=width
            )
        )
    x1, y1, x2, y2 = get_random_crop_coords(height, width, crop_height, crop_width, h_start, w_start)
    img = img[y1:y2, x1:x2]
    return img


class PadToDivisor:
    def __init__(self, divisor):
        super().__init__()
        self.divisor = divisor

    def transform(self, images):

        self._pads = (*self._get_dim_padding(images[0].shape[-1]), *self._get_dim_padding(images[0].shape[-2]))
        self.pad_operation = nn.ZeroPad2d(padding=self._pads)

        out = []
        for im in images:
            out.append(self.pad_operation(im))

        return out

    def inv_transform(self, image):
        assert self._pads is not None,\
            'Something went wrong, inv_transform(...) should be called after transform(...)'
        return self._remove_padding(image)

    def _get_dim_padding(self, dim_size):
        pad = (self.divisor - dim_size % self.divisor) % self.divisor
        pad_upper = pad // 2
        pad_lower = pad - pad_upper

        return pad_upper, pad_lower

    def _remove_padding(self, tensors):
        tensor_h, tensor_w = tensors[0].shape[-2:]
        out = []
        for t in tensors:
            out.append(t[..., self._pads[2]:tensor_h - self._pads[3], self._pads[0]:tensor_w - self._pads[1]])
        return out