INR-Harmon / inference.py
WindVChen's picture
Init
6710c89
raw
history blame
10.8 kB
import os
import argparse
import albumentations
from albumentations import Resize
import torch
import torch.backends.cudnn as cudnn
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from model.build_model import build_model
from datasets.build_dataset import dataset_generator
from utils import misc, metrics
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--workers', type=int, default=1,
metavar='N', help='Dataloader threads.')
parser.add_argument('--batch_size', type=int, default=1,
help='You can override model batch size by specify positive number.')
parser.add_argument('--device', type=str, default='cuda',
help="Whether use cuda, 'cuda' or 'cpu'.")
parser.add_argument('--save_path', type=str, default="./logs",
help='Where to save logs and checkpoints.')
parser.add_argument('--dataset_path', type=str, default=r".\iHarmony4",
help='Dataset path.')
parser.add_argument('--base_size', type=int, default=256,
help='Base size. Resolution of the image input into the Encoder')
parser.add_argument('--input_size', type=int, default=256,
help='Input size. Resolution of the image that want to be generated by the Decoder')
parser.add_argument('--INR_input_size', type=int, default=256,
help='INR input size. Resolution of the image that want to be generated by the Decoder. '
'Should be the same as `input_size`')
parser.add_argument('--INR_MLP_dim', type=int, default=32,
help='Number of channels for INR linear layer.')
parser.add_argument('--LUT_dim', type=int, default=7,
help='Dim of the output LUT. Refer to https://ieeexplore.ieee.org/abstract/document/9206076')
parser.add_argument('--activation', type=str, default='leakyrelu_pe',
help='INR activation layer type: leakyrelu_pe, sine')
parser.add_argument('--pretrained', type=str,
default=r'.\pretrained_models\Resolution_RAW_iHarmony4.pth',
help='Pretrained weight path')
parser.add_argument('--param_factorize_dim', type=int,
default=10,
help='The intermediate dimensions of the factorization of the predicted MLP parameters. '
'Refer to https://arxiv.org/abs/2011.12026')
parser.add_argument('--embedding_type', type=str,
default="CIPS_embed",
help='Which embedding_type to use.')
parser.add_argument('--optim', type=str,
default='adamw',
help='Which optimizer to use.')
parser.add_argument('--INRDecode', action="store_false",
help='Whether INR decoder. Set it to False if you want to test the baseline '
'(https://github.com/SamsungLabs/image_harmonization)')
parser.add_argument('--isMoreINRInput', action="store_false",
help='Whether to cat RGB and mask. See Section 3.4 in the paper.')
parser.add_argument('--hr_train', action="store_true",
help='Whether use hr_train. See section 3.4 in the paper.')
parser.add_argument('--isFullRes', action="store_true",
help='Whether for original resolution. See section 3.4 in the paper.')
opt = parser.parse_args()
opt.save_path = misc.increment_path(os.path.join(opt.save_path, "test1"))
return opt
def inference(val_loader, model, logger, opt):
current_process = 10
model.eval()
metric_log = {
'HAdobe5k': {'Samples': 0, 'MSE': 0, 'fMSE': 0, 'PSNR': 0, 'SSIM': 0},
'HCOCO': {'Samples': 0, 'MSE': 0, 'fMSE': 0, 'PSNR': 0, 'SSIM': 0},
'Hday2night': {'Samples': 0, 'MSE': 0, 'fMSE': 0, 'PSNR': 0, 'SSIM': 0},
'HFlickr': {'Samples': 0, 'MSE': 0, 'fMSE': 0, 'PSNR': 0, 'SSIM': 0},
'All': {'Samples': 0, 'MSE': 0, 'fMSE': 0, 'PSNR': 0, 'SSIM': 0},
}
lut_metric_log = {
'HAdobe5k': {'Samples': 0, 'MSE': 0, 'fMSE': 0, 'PSNR': 0, 'SSIM': 0},
'HCOCO': {'Samples': 0, 'MSE': 0, 'fMSE': 0, 'PSNR': 0, 'SSIM': 0},
'Hday2night': {'Samples': 0, 'MSE': 0, 'fMSE': 0, 'PSNR': 0, 'SSIM': 0},
'HFlickr': {'Samples': 0, 'MSE': 0, 'fMSE': 0, 'PSNR': 0, 'SSIM': 0},
'All': {'Samples': 0, 'MSE': 0, 'fMSE': 0, 'PSNR': 0, 'SSIM': 0},
}
for step, batch in enumerate(val_loader):
composite_image = batch['composite_image'].to(opt.device)
real_image = batch['real_image'].to(opt.device)
mask = batch['mask'].to(opt.device)
category = batch['category']
fg_INR_coordinates = batch['fg_INR_coordinates'].to(opt.device)
with torch.no_grad():
fg_content_bg_appearance_construct, _, lut_transform_image = model(
composite_image,
mask,
fg_INR_coordinates,
)
if opt.INRDecode:
pred_fg_image = fg_content_bg_appearance_construct[-1]
else:
pred_fg_image = misc.lin2img(fg_content_bg_appearance_construct,
val_loader.dataset.INR_dataset.size) if fg_content_bg_appearance_construct is not None else None
if not opt.INRDecode:
pred_harmonized_image = None
else:
pred_harmonized_image = pred_fg_image * (mask > 100 / 255.) + real_image * (~(mask > 100 / 255.))
lut_transform_image = lut_transform_image * (mask > 100 / 255.) + real_image * (~(mask > 100 / 255.))
misc.visualize(real_image, composite_image, mask, pred_fg_image,
pred_harmonized_image, lut_transform_image, opt, -1, show=False,
wandb=False, isAll=True, step=step)
if opt.INRDecode:
mse, fmse, psnr, ssim = metrics.calc_metrics(misc.normalize(pred_harmonized_image, opt, 'inv'),
misc.normalize(real_image, opt, 'inv'), mask)
lut_mse, lut_fmse, lut_psnr, lut_ssim = metrics.calc_metrics(misc.normalize(lut_transform_image, opt, 'inv'),
misc.normalize(real_image, opt, 'inv'), mask)
for idx in range(len(category)):
if opt.INRDecode:
metric_log[category[idx]]['Samples'] += 1
metric_log[category[idx]]['MSE'] += mse[idx]
metric_log[category[idx]]['fMSE'] += fmse[idx]
metric_log[category[idx]]['PSNR'] += psnr[idx]
metric_log[category[idx]]['SSIM'] += ssim[idx]
metric_log['All']['Samples'] += 1
metric_log['All']['MSE'] += mse[idx]
metric_log['All']['fMSE'] += fmse[idx]
metric_log['All']['PSNR'] += psnr[idx]
metric_log['All']['SSIM'] += ssim[idx]
lut_metric_log[category[idx]]['Samples'] += 1
lut_metric_log[category[idx]]['MSE'] += lut_mse[idx]
lut_metric_log[category[idx]]['fMSE'] += lut_fmse[idx]
lut_metric_log[category[idx]]['PSNR'] += lut_psnr[idx]
lut_metric_log[category[idx]]['SSIM'] += lut_ssim[idx]
lut_metric_log['All']['Samples'] += 1
lut_metric_log['All']['MSE'] += lut_mse[idx]
lut_metric_log['All']['fMSE'] += lut_fmse[idx]
lut_metric_log['All']['PSNR'] += lut_psnr[idx]
lut_metric_log['All']['SSIM'] += lut_ssim[idx]
if (step + 1) / len(val_loader) * 100 >= current_process:
logger.info(f'Processing: {current_process}')
current_process += 10
logger.info('=========================')
for key in metric_log.keys():
if opt.INRDecode:
msg = f"{key}-'MSE': {metric_log[key]['MSE'] / metric_log[key]['Samples']:.2f}\n" \
f"{key}-'fMSE': {metric_log[key]['fMSE'] / metric_log[key]['Samples']:.2f}\n" \
f"{key}-'PSNR': {metric_log[key]['PSNR'] / metric_log[key]['Samples']:.2f}\n" \
f"{key}-'SSIM': {metric_log[key]['SSIM'] / metric_log[key]['Samples']:.4f}\n" \
f"{key}-'LUT_MSE': {lut_metric_log[key]['MSE'] / lut_metric_log[key]['Samples']:.2f}\n" \
f"{key}-'LUT_fMSE': {lut_metric_log[key]['fMSE'] / lut_metric_log[key]['Samples']:.2f}\n" \
f"{key}-'LUT_PSNR': {lut_metric_log[key]['PSNR'] / lut_metric_log[key]['Samples']:.2f}\n" \
f"{key}-'LUT_SSIM': {lut_metric_log[key]['SSIM'] / lut_metric_log[key]['Samples']:.4f}\n"
else:
msg = f"{key}-'LUT_MSE': {lut_metric_log[key]['MSE'] / lut_metric_log[key]['Samples']:.2f}\n" \
f"{key}-'LUT_fMSE': {lut_metric_log[key]['fMSE'] / lut_metric_log[key]['Samples']:.2f}\n" \
f"{key}-'LUT_PSNR': {lut_metric_log[key]['PSNR'] / lut_metric_log[key]['Samples']:.2f}\n" \
f"{key}-'LUT_SSIM': {lut_metric_log[key]['SSIM'] / lut_metric_log[key]['Samples']:.4f}\n"
logger.info(msg)
logger.info('=========================')
def main_process(opt):
logger = misc.create_logger(os.path.join(opt.save_path, "log.txt"))
cudnn.benchmark = True
valset_path = os.path.join(opt.dataset_path, "IHD_test.txt")
opt.transform_mean = [.5, .5, .5]
opt.transform_var = [.5, .5, .5]
torch_transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize(opt.transform_mean, opt.transform_var)])
valset_alb_transform = albumentations.Compose([Resize(opt.input_size, opt.input_size)],
additional_targets={'real_image': 'image', 'object_mask': 'image'})
valset = dataset_generator(valset_path, valset_alb_transform, torch_transform, opt, mode='Val')
val_loader = DataLoader(valset, opt.batch_size, shuffle=False, drop_last=False, pin_memory=True,
num_workers=opt.workers, persistent_workers=True)
model = build_model(opt).to(opt.device)
logger.info(f"Load pretrained weight from {opt.pretrained}")
load_dict = torch.load(opt.pretrained)['model']
for k in load_dict.keys():
if k not in model.state_dict().keys():
print(f"Skip {k}")
model.load_state_dict(load_dict, strict=False)
inference(val_loader, model, logger, opt)
if __name__ == '__main__':
opt = parse_args()
os.makedirs(opt.save_path, exist_ok=True)
main_process(opt)