Spaces:
Running
Running
import torch.nn as nn | |
from .hrnetv2.hrnet_ocr import HighResolutionNet | |
from .hrnetv2.modifiers import LRMult | |
from .base.basic_blocks import MaxPoolDownSize | |
from .base.ih_model import IHModelWithBackbone, DeepImageHarmonization | |
def build_backbone(name, opt): | |
return eval(name)(opt) | |
class baseline(IHModelWithBackbone): | |
def __init__(self, opt, ocr=64): | |
base_config = {'model': DeepImageHarmonization, | |
'params': {'depth': 7, 'batchnorm_from': 2, 'image_fusion': True, 'opt': opt}} | |
params = base_config['params'] | |
backbone = HRNetV2(opt, ocr=ocr) | |
params.update(dict( | |
backbone_from=2, | |
backbone_channels=backbone.output_channels, | |
backbone_mode='cat', | |
opt=opt | |
)) | |
base_model = base_config['model'](**params) | |
super(baseline, self).__init__(base_model, backbone, False, 'sum', opt=opt) | |
class HRNetV2(nn.Module): | |
def __init__( | |
self, opt, | |
cat_outputs=True, | |
pyramid_channels=-1, pyramid_depth=4, | |
width=18, ocr=128, small=False, | |
lr_mult=0.1, pretained=True | |
): | |
super(HRNetV2, self).__init__() | |
self.opt = opt | |
self.cat_outputs = cat_outputs | |
self.ocr_on = ocr > 0 and cat_outputs | |
self.pyramid_on = pyramid_channels > 0 and cat_outputs | |
self.hrnet = HighResolutionNet(width, 2, ocr_width=ocr, small=small, opt=opt) | |
self.hrnet.apply(LRMult(lr_mult)) | |
if self.ocr_on: | |
self.hrnet.ocr_distri_head.apply(LRMult(1.0)) | |
self.hrnet.ocr_gather_head.apply(LRMult(1.0)) | |
self.hrnet.conv3x3_ocr.apply(LRMult(1.0)) | |
hrnet_cat_channels = [width * 2 ** i for i in range(4)] | |
if self.pyramid_on: | |
self.output_channels = [pyramid_channels] * 4 | |
elif self.ocr_on: | |
self.output_channels = [ocr * 2] | |
elif self.cat_outputs: | |
self.output_channels = [sum(hrnet_cat_channels)] | |
else: | |
self.output_channels = hrnet_cat_channels | |
if self.pyramid_on: | |
downsize_in_channels = ocr * 2 if self.ocr_on else sum(hrnet_cat_channels) | |
self.downsize = MaxPoolDownSize(downsize_in_channels, pyramid_channels, pyramid_channels, pyramid_depth) | |
if pretained: | |
self.load_pretrained_weights( | |
r".\pretrained_models/hrnetv2_w18_imagenet_pretrained.pth") | |
self.output_resolution = (opt.input_size // 8) ** 2 | |
def forward(self, image, mask, mask_features=None): | |
outputs = list(self.hrnet(image, mask, mask_features)) | |
return outputs | |
def load_pretrained_weights(self, pretrained_path): | |
self.hrnet.load_pretrained_weights(pretrained_path) | |