Spaces:
Running
Running
import os | |
import cv2 | |
import gradio as gr | |
import numpy as np | |
import sys | |
import io | |
class Logger: | |
def __init__(self): | |
self.terminal = sys.stdout | |
self.log = io.BytesIO() | |
def write(self, message): | |
self.terminal.write(message) | |
self.log.write(bytes(message, encoding='utf-8')) | |
def flush(self): | |
self.terminal.flush() | |
self.log.flush() | |
def isatty(self): | |
return False | |
log = Logger() | |
sys.stdout = log | |
def read_logs(): | |
out = log.log.getvalue().decode() | |
if out.count("\n") >= 30: | |
log.log = io.BytesIO() | |
sys.stdout.flush() | |
return out | |
with gr.Blocks(css=".output-image, .input-image, .image-preview {height: 600px !important}") as app: | |
gr.Markdown(""" | |
# HINet (or INR-Harmonization) - A novel image Harmonization method based on Implicit neural Networks | |
## Harmonize any image you want! Arbitrary resolution, and arbitrary aspect ratio! | |
### Official Gradio Demo. See here for [**How to play with this Space**](https://github.com/WindVChen/INR-Harmonization/blob/main/assets/demo.gif) | |
**Since Gradio Space only support CPU, the speed may kind of slow. You may better download the code to run locally with a GPU.** | |
<a href="https://huggingface.co/spaces/WindVChen/INR-Harmon?duplicate=true" style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank"> | |
<img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> for no queue on your own hardware.</p> | |
* Official Repo: [INR-Harmonization](https://github.com/WindVChen/INR-Harmonization) | |
""") | |
gr.Markdown(""" | |
## Quick Start | |
1. Select desired `Pretrained Model`. | |
2. Select a composite image, and then a mask with the same size. | |
3. Select the inference mode (for non-square image, only `Arbitrary Image` support). Also note that `Square Image` mode will be much faster than `Arbitrary Image` mode. | |
4. Set `Split Resolution` (Patches' resolution) or `Split Number` (How many patches, about N*N) according to the inference mode. | |
3. Click `Start` and enjoy it! | |
""") | |
valid_checkpoints_dict = {"Resolution_256_iHarmony4": "Resolution_256_iHarmony4.pth", | |
"Resolution_1024_HAdobe5K": "Resolution_1024_HAdobe5K.pth", | |
"Resolution_2048_HAdobe5K": "Resolution_2048_HAdobe5K.pth", | |
"Resolution_RAW_HAdobe5K": "Resolution_RAW_HAdobe5K.pth", | |
"Resolution_RAW_iHarmony4": "Resolution_RAW_iHarmony4.pth"} | |
global_state = gr.State({ | |
'pretrained_weight': valid_checkpoints_dict["Resolution_RAW_iHarmony4"], | |
}) | |
with gr.Row(): | |
with gr.Column(): | |
form_composite_image = gr.Image(label='Input Composite image', type='pil').style(height=512) | |
gr.Examples(examples=sorted([os.path.join("demo", i) for i in os.listdir("demo") if "composite" in i]), | |
label="Composite Examples", inputs=form_composite_image, cache_examples=False) | |
with gr.Column(): | |
form_mask_image = gr.Image(label='Input Mask image', type='pil', interactive=False).style(height=512) | |
gr.Examples(examples=sorted([os.path.join("demo", i) for i in os.listdir("demo") if "mask" in i]), | |
label="Mask Examples", inputs=form_mask_image, cache_examples=False) | |
with gr.Row(): | |
with gr.Column(scale=4): | |
with gr.Row(): | |
with gr.Column(scale=2, min_width=10): | |
gr.Markdown(value='Model Selection', show_label=False) | |
with gr.Column(scale=4, min_width=10): | |
form_pretrained_dropdown = gr.Dropdown( | |
choices=list(valid_checkpoints_dict.values()), | |
label="Pretrained Model", | |
value=valid_checkpoints_dict["Resolution_RAW_iHarmony4"], | |
interactive=True | |
) | |
with gr.Row(): | |
with gr.Column(scale=2, min_width=10): | |
gr.Markdown(value='Inference Mode', show_label=False) | |
with gr.Column(scale=4, min_width=10): | |
form_inference_mode = gr.Radio( | |
['Square Image', 'Arbitrary Image'], | |
value='Arbitrary Image', | |
interactive=False, | |
label='Mode', | |
) | |
with gr.Row(): | |
with gr.Column(scale=2, min_width=10): | |
gr.Markdown(value='Split Parameter', show_label=False) | |
with gr.Column(scale=4, min_width=10): | |
form_split_res = gr.Slider( | |
minimum=0, | |
maximum=2048, | |
step=128, | |
value=256, | |
interactive=False, | |
label="Split Resolution", | |
) | |
form_split_num = gr.Number( | |
value=2, | |
interactive=False, | |
label="Split Number") | |
with gr.Row(): | |
form_log = gr.Textbox(read_logs, label="Logs", interactive=False, type="text", every=1) | |
with gr.Column(scale=4): | |
form_harmonized_image = gr.Image(label='Harmonized Result', type='numpy', interactive=False).style(height=512) | |
form_start_btn = gr.Button("Start Harmonization", interactive=False) | |
form_reset_btn = gr.Button("Reset", interactive=True) | |
form_stop_btn = gr.Button("Stop", interactive=True) | |
def on_change_form_composite_image(form_composite_image): | |
if form_composite_image is None: | |
return gr.update(interactive=False, value=None), gr.update(value=None) | |
return gr.update(interactive=True, value=None), gr.update(value=None) | |
def on_change_form_mask_image(form_composite_image, form_mask_image): | |
if form_mask_image is None: | |
return gr.update(interactive=False), gr.update( | |
interactive=False if form_composite_image is None else True), gr.update(interactive=False), gr.update( | |
interactive=False), gr.update(interactive=False), gr.update(value=None) | |
if form_composite_image.size[:2] != form_mask_image.size[:2]: | |
raise gr.Error("Composite image and mask image should have the same resolution!") | |
else: | |
w, h = form_composite_image.size[:2] | |
if h != w or (h % 16 != 0): | |
return gr.update(value='Arbitrary Image', interactive=False), gr.update(interactive=True), gr.update( | |
interactive=True), gr.update(interactive=True, visible=True), gr.update(interactive=False, | |
value=-1, visible=False), gr.update(value=None) | |
else: | |
return gr.update(value='Square Image', interactive=True), gr.update(interactive=True), gr.update( | |
interactive=True), gr.update(interactive=False, visible=False), gr.update(interactive=True, | |
value=h // 2, | |
maximum=h, | |
minimum=h // 16, | |
step=h // 16, visible=True), gr.update(value=None) | |
form_composite_image.change( | |
on_change_form_composite_image, | |
inputs=[form_composite_image], | |
outputs=[form_mask_image, form_harmonized_image] | |
) | |
form_mask_image.change( | |
on_change_form_mask_image, | |
inputs=[form_composite_image, form_mask_image], | |
outputs=[form_inference_mode, form_mask_image, form_start_btn, form_split_num, form_split_res, | |
form_harmonized_image] | |
) | |
def on_change_form_split_num(form_composite_image, form_split_num): | |
w, h = form_composite_image.size[:2] | |
if form_split_num < 1: | |
return gr.update(value=1) | |
elif form_split_num > min(w, h): | |
return gr.update(value=min(w, h)) | |
else: | |
return gr.update(value=form_split_num) | |
form_split_num.change( | |
on_change_form_split_num, | |
inputs=[form_composite_image, form_split_num], | |
outputs=[form_split_num] | |
) | |
def on_change_form_inference_mode(form_inference_mode): | |
if form_inference_mode == "Square Image": | |
return gr.update(interactive=True, visible=True), gr.update(interactive=False, visible=False) | |
else: | |
return gr.update(interactive=False, visible=False), gr.update(interactive=True, visible=True) | |
form_inference_mode.change(on_change_form_inference_mode, inputs=[form_inference_mode], | |
outputs=[form_split_res, form_split_num]) | |
def on_click_form_start_btn(form_composite_image, form_mask_image, form_pretrained_dropdown, form_inference_mode, | |
form_split_res, form_split_num): | |
log.log = io.BytesIO() | |
print(f"Harmonizing image with {form_composite_image.size[1]}*{form_composite_image.size[0]}...") | |
if form_inference_mode == "Square Image": | |
from efficient_inference_for_square_image import parse_args, main_process, global_state | |
global_state[0] = 1 | |
opt = parse_args() | |
opt.transform_mean = [.5, .5, .5] | |
opt.transform_var = [.5, .5, .5] | |
opt.pretrained = os.path.join("./pretrained_models", form_pretrained_dropdown) | |
opt.split_resolution = form_split_res | |
opt.save_path = None | |
opt.workers = 0 | |
opt.device = "cpu" | |
composite_image = np.asarray(form_composite_image) | |
mask = np.asarray(form_mask_image) | |
try: | |
return cv2.cvtColor( | |
main_process(opt, composite_image=composite_image, mask=mask), | |
cv2.COLOR_BGR2RGB) | |
except: | |
raise gr.Error("Patches too big. Try to reduce the `split_res`!") | |
else: | |
from inference_for_arbitrary_resolution_image import parse_args, main_process, global_state | |
global_state[0] = 1 | |
opt = parse_args() | |
opt.transform_mean = [.5, .5, .5] | |
opt.transform_var = [.5, .5, .5] | |
opt.pretrained = os.path.join("./pretrained_models", form_pretrained_dropdown) | |
opt.split_num = int(form_split_num) | |
opt.save_path = None | |
opt.workers = 0 | |
opt.device = "cpu" | |
composite_image = np.asarray(form_composite_image) | |
mask = np.asarray(form_mask_image) | |
try: | |
return cv2.cvtColor( | |
main_process(opt, composite_image=composite_image, mask=mask), | |
cv2.COLOR_BGR2RGB) | |
except: | |
raise gr.Error("Patches too big. Try to increase the `split_num`!") | |
generate = form_start_btn.click(on_click_form_start_btn, | |
inputs=[form_composite_image, form_mask_image, form_pretrained_dropdown, | |
form_inference_mode, | |
form_split_res, form_split_num], outputs=[form_harmonized_image]) | |
def on_click_form_reset_btn(form_inference_mode): | |
if form_inference_mode == "Square Image": | |
from efficient_inference_for_square_image import global_state | |
global_state[0] = 0 | |
else: | |
from inference_for_arbitrary_resolution_image import global_state | |
global_state[0] = 0 | |
log.log = io.BytesIO() | |
return gr.update(value=None), gr.update(value=None, interactive=True), gr.update(value=None, | |
interactive=False), gr.update( | |
interactive=False) | |
form_reset_btn.click(on_click_form_reset_btn, | |
inputs=[form_inference_mode], | |
outputs=[form_log, form_composite_image, form_mask_image, form_start_btn], cancels=generate) | |
def on_click_form_stop(form_inference_mode): | |
if form_inference_mode == "Square Image": | |
from efficient_inference_for_square_image import global_state | |
global_state[0] = 0 | |
else: | |
from inference_for_arbitrary_resolution_image import global_state | |
global_state[0] = 0 | |
log.log = io.BytesIO() | |
return gr.update(value=None), gr.update(value=None, interactive=True), gr.update(value=None, | |
interactive=False), gr.update( | |
interactive=False) | |
form_stop_btn.click(on_click_form_stop, | |
inputs=[form_inference_mode], | |
outputs=[form_log, form_composite_image, form_mask_image, form_start_btn], cancels=generate) | |
gr.HTML(""" | |
<style> | |
.container { | |
position: absolute; | |
height: 50px; | |
text-align: center; | |
line-height: 50px; | |
width: 100%; | |
} | |
</style> | |
<div class="container"> | |
Gradio demo supported by | |
<a href="https://github.com/WindVChen">WindVChen</a> | |
</div> | |
""") | |
gr.close_all() | |
app.queue(concurrency_count=1, max_size=200, api_open=False) | |
app.launch(show_api=False) | |