Spaces:
Running
Running
import os | |
import argparse | |
import albumentations | |
from albumentations import HorizontalFlip, Resize, RandomResizedCrop | |
import torch.backends.cudnn as cudnn | |
import torchvision.transforms as transforms | |
from torch.utils.data import DataLoader | |
from torch.optim import lr_scheduler | |
import processing | |
from utils import build_loss, misc | |
from model.build_model import build_model | |
from datasets.build_dataset import dataset_generator | |
def parse_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--workers', type=int, default=8, | |
metavar='N', help='Dataloader threads.') | |
parser.add_argument('--batch_size', type=int, default=16, | |
help='You can override model batch size by specify positive number.') | |
parser.add_argument('--device', type=str, default='cuda', | |
help="Whether use cuda, 'cuda' or 'cpu'.") | |
parser.add_argument('--epochs', type=int, default=60, | |
help='Epochs number.') | |
parser.add_argument('--lr', type=int, default=1e-4, | |
help='Learning rate.') | |
parser.add_argument('--save_path', type=str, default="./logs", | |
help='Where to save logs and checkpoints.') | |
parser.add_argument('--dataset_path', type=str, default=r".\iHarmony4", | |
help='Dataset path.') | |
parser.add_argument('--print_freq', type=int, default=100, | |
help='Number of iterations then print.') | |
parser.add_argument('--base_size', type=int, default=256, | |
help='Base size. Resolution of the image input into the Encoder') | |
parser.add_argument('--input_size', type=int, default=256, | |
help='Input size. Resolution of the image that want to be generated by the Decoder') | |
parser.add_argument('--INR_input_size', type=int, default=256, | |
help='INR input size. Resolution of the image that want to be generated by the Decoder. ' | |
'Should be the same as `input_size`') | |
parser.add_argument('--INR_MLP_dim', type=int, default=32, | |
help='Number of channels for INR linear layer.') | |
parser.add_argument('--LUT_dim', type=int, default=7, | |
help='Dim of the output LUT. Refer to https://ieeexplore.ieee.org/abstract/document/9206076') | |
parser.add_argument('--activation', type=str, default='leakyrelu_pe', | |
help='INR activation layer type: leakyrelu_pe, sine') | |
parser.add_argument('--pretrained', type=str, | |
default=None, | |
help='Pretrained weight path') | |
parser.add_argument('--param_factorize_dim', type=int, | |
default=10, | |
help='The intermediate dimensions of the factorization of the predicted MLP parameters. ' | |
'Refer to https://arxiv.org/abs/2011.12026') | |
parser.add_argument('--embedding_type', type=str, | |
default="CIPS_embed", | |
help='Which embedding_type to use.') | |
parser.add_argument('--optim', type=str, | |
default='adamw', | |
help='Which optimizer to use.') | |
parser.add_argument('--INRDecode', action="store_false", | |
help='Whether INR decoder. Set it to False if you want to test the baseline ' | |
'(https://github.com/SamsungLabs/image_harmonization)') | |
parser.add_argument('--isMoreINRInput', action="store_false", | |
help='Whether to cat RGB and mask. See Section 3.4 in the paper.') | |
parser.add_argument('--hr_train', action="store_true", | |
help='Whether use hr_train. See section 3.4 in the paper.') | |
parser.add_argument('--isFullRes', action="store_true", | |
help='Whether for original resolution. See section 3.4 in the paper.') | |
opt = parser.parse_args() | |
opt.save_path = misc.increment_path(os.path.join(opt.save_path, "exp1")) | |
try: | |
import wandb | |
opt.wandb = True | |
wandb.init(config=opt, project="INR_Harmonization", name=os.path.basename(opt.save_path)) | |
except: | |
opt.wandb = False | |
return opt | |
def main_process(opt): | |
logger = misc.create_logger(os.path.join(opt.save_path, "log.txt")) | |
cudnn.benchmark = True | |
trainset_path = os.path.join(opt.dataset_path, "IHD_train.txt") | |
valset_path = os.path.join(opt.dataset_path, "IHD_test.txt") | |
opt.transform_mean = [.5, .5, .5] | |
opt.transform_var = [.5, .5, .5] | |
torch_transform = transforms.Compose([transforms.ToTensor(), | |
transforms.Normalize(opt.transform_mean, opt.transform_var)]) | |
trainset_alb_transform = albumentations.Compose( | |
[ | |
RandomResizedCrop(opt.input_size, opt.input_size, scale=(0.5, 1.0)), | |
HorizontalFlip()], | |
additional_targets={'real_image': 'image', 'object_mask': 'image'} | |
) | |
valset_alb_transform = albumentations.Compose([Resize(opt.input_size, opt.input_size)], | |
additional_targets={'real_image': 'image', 'object_mask': 'image'}) | |
trainset = dataset_generator(trainset_path, trainset_alb_transform, torch_transform, opt, mode='Train') | |
valset = dataset_generator(valset_path, valset_alb_transform, torch_transform, opt, mode='Val') | |
train_loader = DataLoader(trainset, opt.batch_size, shuffle=True, drop_last=True, | |
pin_memory=True, | |
num_workers=opt.workers, persistent_workers=True) | |
val_loader = DataLoader(valset, opt.batch_size, shuffle=False, drop_last=False, pin_memory=True, | |
num_workers=opt.workers, persistent_workers=True) | |
model = build_model(opt).to(opt.device) | |
loss_fn = build_loss.loss_generator() | |
optimizer_params = { | |
'lr': opt.lr, | |
'weight_decay': 1e-2 | |
} | |
optimizer = misc.get_optimizer(model, opt.optim, optimizer_params) | |
scheduler = lr_scheduler.OneCycleLR(optimizer, max_lr=opt.lr, total_steps=opt.epochs * len(train_loader), | |
pct_start=0.0) | |
processing.train(train_loader, val_loader, model, optimizer, scheduler, loss_fn, logger, opt) | |
if __name__ == '__main__': | |
opt = parse_args() | |
os.makedirs(opt.save_path, exist_ok=True) | |
main_process(opt) | |