import cv2 import shutil from tqdm import tqdm from pathlib import Path max_size = 1024 input_dataset_path = r'.\iHarmony4\HAdobe5k' output_path = f'{input_dataset_path}_resized{max_size}' input_dataset_path = Path(input_dataset_path) output_path = Path(output_path) assert not output_path.exists() output_path.mkdir() for subfolder in ['composite_images', 'masks', 'real_images']: (output_path / subfolder).mkdir() for annotation_path in input_dataset_path.glob('*.txt'): shutil.copy(annotation_path, output_path / annotation_path.name) images_list = sorted(input_dataset_path.rglob('*.jpg')) images_list.extend(sorted(input_dataset_path.rglob('*.png'))) for x in tqdm(images_list): image = cv2.imread(str(x), cv2.IMREAD_UNCHANGED) new_path = output_path / x.relative_to(input_dataset_path) if max(image.shape[:2]) <= max_size: shutil.copy(x, new_path) continue new_width = max_size new_height = max_size scale = max_size / max(image.shape[:2]) if image.shape[0] > image.shape[1]: new_width = int(round(scale * image.shape[1])) else: new_height = int(round(scale * image.shape[0])) image = cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_LANCZOS4) if x.suffix == '.jpg': cv2.imwrite(str(new_path), image, [cv2.IMWRITE_JPEG_QUALITY, 90]) else: cv2.imwrite(str(new_path), image)