import torch import torch.nn as nn import torch._utils import torch.nn.functional as F class SpatialGather_Module(nn.Module): """ Aggregate the context features according to the initial predicted probability distribution. Employ the soft-weighted method to aggregate the context. """ def __init__(self, cls_num=0, scale=1): super(SpatialGather_Module, self).__init__() self.cls_num = cls_num self.scale = scale def forward(self, feats, probs): batch_size, c, h, w = probs.size(0), probs.size(1), probs.size(2), probs.size(3) probs = probs.view(batch_size, c, -1) feats = feats.view(batch_size, feats.size(1), -1) feats = feats.permute(0, 2, 1) # batch x hw x c probs = F.softmax(self.scale * probs, dim=2) # batch x k x hw ocr_context = torch.matmul(probs, feats) \ .permute(0, 2, 1).unsqueeze(3).contiguous() # batch x k x c return ocr_context class SpatialOCR_Module(nn.Module): """ Implementation of the OCR module: We aggregate the global object representation to update the representation for each pixel. """ def __init__(self, in_channels, key_channels, out_channels, scale=1, dropout=0.1, norm_layer=nn.BatchNorm2d, align_corners=True, opt=None): super(SpatialOCR_Module, self).__init__() self.object_context_block = ObjectAttentionBlock2D(in_channels, key_channels, scale, norm_layer, align_corners) _in_channels = 2 * in_channels self.conv_bn_dropout = nn.Sequential( nn.Conv2d(_in_channels, out_channels, kernel_size=1, padding=0, bias=False), nn.Sequential(norm_layer(out_channels), nn.ReLU(inplace=True)), nn.Dropout2d(dropout) ) def forward(self, feats, proxy_feats): context = self.object_context_block(feats, proxy_feats) output = self.conv_bn_dropout(torch.cat([context, feats], 1)) return output class ObjectAttentionBlock2D(nn.Module): ''' The basic implementation for object context block Input: N X C X H X W Parameters: in_channels : the dimension of the input feature map key_channels : the dimension after the key/query transform scale : choose the scale to downsample the input feature maps (save memory cost) bn_type : specify the bn type Return: N X C X H X W ''' def __init__(self, in_channels, key_channels, scale=1, norm_layer=nn.BatchNorm2d, align_corners=True): super(ObjectAttentionBlock2D, self).__init__() self.scale = scale self.in_channels = in_channels self.key_channels = key_channels self.align_corners = align_corners self.pool = nn.MaxPool2d(kernel_size=(scale, scale)) self.f_pixel = nn.Sequential( nn.Conv2d(in_channels=self.in_channels, out_channels=self.key_channels, kernel_size=1, stride=1, padding=0, bias=False), nn.Sequential(norm_layer(self.key_channels), nn.ReLU(inplace=True)), nn.Conv2d(in_channels=self.key_channels, out_channels=self.key_channels, kernel_size=1, stride=1, padding=0, bias=False), nn.Sequential(norm_layer(self.key_channels), nn.ReLU(inplace=True)) ) self.f_object = nn.Sequential( nn.Conv2d(in_channels=self.in_channels, out_channels=self.key_channels, kernel_size=1, stride=1, padding=0, bias=False), nn.Sequential(norm_layer(self.key_channels), nn.ReLU(inplace=True)), nn.Conv2d(in_channels=self.key_channels, out_channels=self.key_channels, kernel_size=1, stride=1, padding=0, bias=False), nn.Sequential(norm_layer(self.key_channels), nn.ReLU(inplace=True)) ) self.f_down = nn.Sequential( nn.Conv2d(in_channels=self.in_channels, out_channels=self.key_channels, kernel_size=1, stride=1, padding=0, bias=False), nn.Sequential(norm_layer(self.key_channels), nn.ReLU(inplace=True)) ) self.f_up = nn.Sequential( nn.Conv2d(in_channels=self.key_channels, out_channels=self.in_channels, kernel_size=1, stride=1, padding=0, bias=False), nn.Sequential(norm_layer(self.in_channels), nn.ReLU(inplace=True)) ) def forward(self, x, proxy): batch_size, h, w = x.size(0), x.size(2), x.size(3) if self.scale > 1: x = self.pool(x) query = self.f_pixel(x).view(batch_size, self.key_channels, -1) query = query.permute(0, 2, 1) key = self.f_object(proxy).view(batch_size, self.key_channels, -1) value = self.f_down(proxy).view(batch_size, self.key_channels, -1) value = value.permute(0, 2, 1) sim_map = torch.matmul(query, key) sim_map = (self.key_channels ** -.5) * sim_map sim_map = F.softmax(sim_map, dim=-1) # add bg context ... context = torch.matmul(sim_map, value) context = context.permute(0, 2, 1).contiguous() context = context.view(batch_size, self.key_channels, *x.size()[2:]) context = self.f_up(context) if self.scale > 1: context = F.interpolate(input=context, size=(h, w), mode='bilinear', align_corners=self.align_corners) return context