import os import argparse import albumentations from albumentations import HorizontalFlip, Resize, RandomResizedCrop import torch.backends.cudnn as cudnn import torchvision.transforms as transforms from torch.utils.data import DataLoader from torch.optim import lr_scheduler import processing from utils import build_loss, misc from model.build_model import build_model from datasets.build_dataset import dataset_generator def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--workers', type=int, default=8, metavar='N', help='Dataloader threads.') parser.add_argument('--batch_size', type=int, default=16, help='You can override model batch size by specify positive number.') parser.add_argument('--device', type=str, default='cuda', help="Whether use cuda, 'cuda' or 'cpu'.") parser.add_argument('--epochs', type=int, default=60, help='Epochs number.') parser.add_argument('--lr', type=int, default=1e-4, help='Learning rate.') parser.add_argument('--save_path', type=str, default="./logs", help='Where to save logs and checkpoints.') parser.add_argument('--dataset_path', type=str, default=r".\iHarmony4", help='Dataset path.') parser.add_argument('--print_freq', type=int, default=100, help='Number of iterations then print.') parser.add_argument('--base_size', type=int, default=256, help='Base size. Resolution of the image input into the Encoder') parser.add_argument('--input_size', type=int, default=256, help='Input size. Resolution of the image that want to be generated by the Decoder') parser.add_argument('--INR_input_size', type=int, default=256, help='INR input size. Resolution of the image that want to be generated by the Decoder. ' 'Should be the same as `input_size`') parser.add_argument('--INR_MLP_dim', type=int, default=32, help='Number of channels for INR linear layer.') parser.add_argument('--LUT_dim', type=int, default=7, help='Dim of the output LUT. Refer to https://ieeexplore.ieee.org/abstract/document/9206076') parser.add_argument('--activation', type=str, default='leakyrelu_pe', help='INR activation layer type: leakyrelu_pe, sine') parser.add_argument('--pretrained', type=str, default=None, help='Pretrained weight path') parser.add_argument('--param_factorize_dim', type=int, default=10, help='The intermediate dimensions of the factorization of the predicted MLP parameters. ' 'Refer to https://arxiv.org/abs/2011.12026') parser.add_argument('--embedding_type', type=str, default="CIPS_embed", help='Which embedding_type to use.') parser.add_argument('--optim', type=str, default='adamw', help='Which optimizer to use.') parser.add_argument('--INRDecode', action="store_false", help='Whether INR decoder. Set it to False if you want to test the baseline ' '(https://github.com/SamsungLabs/image_harmonization)') parser.add_argument('--isMoreINRInput', action="store_false", help='Whether to cat RGB and mask. See Section 3.4 in the paper.') parser.add_argument('--hr_train', action="store_true", help='Whether use hr_train. See section 3.4 in the paper.') parser.add_argument('--isFullRes', action="store_true", help='Whether for original resolution. See section 3.4 in the paper.') opt = parser.parse_args() opt.save_path = misc.increment_path(os.path.join(opt.save_path, "exp1")) try: import wandb opt.wandb = True wandb.init(config=opt, project="INR_Harmonization", name=os.path.basename(opt.save_path)) except: opt.wandb = False return opt def main_process(opt): logger = misc.create_logger(os.path.join(opt.save_path, "log.txt")) cudnn.benchmark = True trainset_path = os.path.join(opt.dataset_path, "IHD_train.txt") valset_path = os.path.join(opt.dataset_path, "IHD_test.txt") opt.transform_mean = [.5, .5, .5] opt.transform_var = [.5, .5, .5] torch_transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(opt.transform_mean, opt.transform_var)]) trainset_alb_transform = albumentations.Compose( [ RandomResizedCrop(opt.input_size, opt.input_size, scale=(0.5, 1.0)), HorizontalFlip()], additional_targets={'real_image': 'image', 'object_mask': 'image'} ) valset_alb_transform = albumentations.Compose([Resize(opt.input_size, opt.input_size)], additional_targets={'real_image': 'image', 'object_mask': 'image'}) trainset = dataset_generator(trainset_path, trainset_alb_transform, torch_transform, opt, mode='Train') valset = dataset_generator(valset_path, valset_alb_transform, torch_transform, opt, mode='Val') train_loader = DataLoader(trainset, opt.batch_size, shuffle=True, drop_last=True, pin_memory=True, num_workers=opt.workers, persistent_workers=True) val_loader = DataLoader(valset, opt.batch_size, shuffle=False, drop_last=False, pin_memory=True, num_workers=opt.workers, persistent_workers=True) model = build_model(opt).to(opt.device) loss_fn = build_loss.loss_generator() optimizer_params = { 'lr': opt.lr, 'weight_decay': 1e-2 } optimizer = misc.get_optimizer(model, opt.optim, optimizer_params) scheduler = lr_scheduler.OneCycleLR(optimizer, max_lr=opt.lr, total_steps=opt.epochs * len(train_loader), pct_start=0.0) processing.train(train_loader, val_loader, model, optimizer, scheduler, loss_fn, logger, opt) if __name__ == '__main__': opt = parse_args() os.makedirs(opt.save_path, exist_ok=True) main_process(opt)