import torch.nn as nn from .hrnetv2.hrnet_ocr import HighResolutionNet from .hrnetv2.modifiers import LRMult from .base.basic_blocks import MaxPoolDownSize from .base.ih_model import IHModelWithBackbone, DeepImageHarmonization def build_backbone(name, opt): return eval(name)(opt) class baseline(IHModelWithBackbone): def __init__(self, opt, ocr=64): base_config = {'model': DeepImageHarmonization, 'params': {'depth': 7, 'batchnorm_from': 2, 'image_fusion': True, 'opt': opt}} params = base_config['params'] backbone = HRNetV2(opt, ocr=ocr) params.update(dict( backbone_from=2, backbone_channels=backbone.output_channels, backbone_mode='cat', opt=opt )) base_model = base_config['model'](**params) super(baseline, self).__init__(base_model, backbone, False, 'sum', opt=opt) class HRNetV2(nn.Module): def __init__( self, opt, cat_outputs=True, pyramid_channels=-1, pyramid_depth=4, width=18, ocr=128, small=False, lr_mult=0.1, pretained=True ): super(HRNetV2, self).__init__() self.opt = opt self.cat_outputs = cat_outputs self.ocr_on = ocr > 0 and cat_outputs self.pyramid_on = pyramid_channels > 0 and cat_outputs self.hrnet = HighResolutionNet(width, 2, ocr_width=ocr, small=small, opt=opt) self.hrnet.apply(LRMult(lr_mult)) if self.ocr_on: self.hrnet.ocr_distri_head.apply(LRMult(1.0)) self.hrnet.ocr_gather_head.apply(LRMult(1.0)) self.hrnet.conv3x3_ocr.apply(LRMult(1.0)) hrnet_cat_channels = [width * 2 ** i for i in range(4)] if self.pyramid_on: self.output_channels = [pyramid_channels] * 4 elif self.ocr_on: self.output_channels = [ocr * 2] elif self.cat_outputs: self.output_channels = [sum(hrnet_cat_channels)] else: self.output_channels = hrnet_cat_channels if self.pyramid_on: downsize_in_channels = ocr * 2 if self.ocr_on else sum(hrnet_cat_channels) self.downsize = MaxPoolDownSize(downsize_in_channels, pyramid_channels, pyramid_channels, pyramid_depth) if pretained: self.load_pretrained_weights( r".\pretrained_models/hrnetv2_w18_imagenet_pretrained.pth") self.output_resolution = (opt.input_size // 8) ** 2 def forward(self, image, mask, mask_features=None): outputs = list(self.hrnet(image, mask, mask_features)) return outputs def load_pretrained_weights(self, pretrained_path): self.hrnet.load_pretrained_weights(pretrained_path)