Spaces:
Running
Running
File size: 10,474 Bytes
0af9841 6c68b83 0af9841 6c68b83 0af9841 6c68b83 0af9841 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
import yaml
import random
import librosa
import numpy as np
import torch
import torchaudio
from openphonemizer import OpenPhonemizer
from collections import OrderedDict
from munch import Munch
from nltk.tokenize import word_tokenize
from cached_path import cached_path
# Local or project imports
from models import *
from Utils.PLBERT.util import load_plbert
from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule
# -----------------------------------------------------------------------------
# SEEDS AND DETERMINISM
# -----------------------------------------------------------------------------
random.seed(0)
np.random.seed(0)
torch.manual_seed(0)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
# -----------------------------------------------------------------------------
# CONSTANTS / CHARACTERS
# -----------------------------------------------------------------------------
_pad = "$"
_punctuation = ';:,.!?¡¿—…"«»“” '
_letters = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
dicts = {symbols[i]: i for i in range(len(symbols))}
# -----------------------------------------------------------------------------
# TEXT CLEANER
# -----------------------------------------------------------------------------
class TextCleaner:
"""
Maps individual characters to their corresponding indices.
If an unknown character is found, it prints a warning.
"""
def __init__(self, dummy=None):
self.word_index_dictionary = dicts
print(len(dicts))
def __call__(self, text):
indexes = []
for char in text:
try:
indexes.append(self.word_index_dictionary[char])
except KeyError:
print("CLEAN", text)
return indexes
textclenaer = TextCleaner()
# -----------------------------------------------------------------------------
# AUDIO PROCESSING
# -----------------------------------------------------------------------------
to_mel = torchaudio.transforms.MelSpectrogram(
n_mels=80, n_fft=2048, win_length=1200, hop_length=300
)
mean, std = -4, 4
def preprocess(wave: np.ndarray) -> torch.Tensor:
"""
Convert a NumPy audio array into a normalized mel spectrogram tensor.
"""
wave_tensor = torch.from_numpy(wave).float()
mel_tensor = to_mel(wave_tensor)
mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std
return mel_tensor
def length_to_mask(lengths: torch.Tensor) -> torch.Tensor:
"""
Return a boolean mask based on the lengths of each item in the batch.
"""
max_len = lengths.max()
mask = (
torch.arange(max_len).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
)
mask = torch.gt(mask + 1, lengths.unsqueeze(1))
return mask
# -----------------------------------------------------------------------------
# MISC UTILS
# -----------------------------------------------------------------------------
def recursive_munch(d):
"""
Recursively convert dictionaries to Munch objects.
"""
if isinstance(d, dict):
return Munch((k, recursive_munch(v)) for k, v in d.items())
elif isinstance(d, list):
return [recursive_munch(v) for v in d]
else:
return d
def compute_style(path: str) -> torch.Tensor:
"""
Load an audio file, trim it, resample if needed, then
compute and return a style vector by passing through the style encoder
and predictor encoder.
"""
wave, sr = librosa.load(path, sr=24000)
audio, _ = librosa.effects.trim(wave, top_db=30)
if sr != 24000:
audio = librosa.resample(audio, sr, 24000)
mel_tensor = preprocess(audio).to(device)
with torch.no_grad():
ref_s = model.style_encoder(mel_tensor.unsqueeze(1))
ref_p = model.predictor_encoder(mel_tensor.unsqueeze(1))
return torch.cat([ref_s, ref_p], dim=1)
# -----------------------------------------------------------------------------
# DEVICE SELECTION
# -----------------------------------------------------------------------------
device = "cpu"
if torch.cuda.is_available():
device = "cuda"
elif torch.backends.mps.is_available():
# Optionally enable MPS if appropriate (commented out by default).
# device = "mps"
pass
# -----------------------------------------------------------------------------
# PHONEMIZER INITIALIZATION
# -----------------------------------------------------------------------------
global_phonemizer = OpenPhonemizer()
# -----------------------------------------------------------------------------
# LOAD CONFIG
# -----------------------------------------------------------------------------
config = yaml.safe_load(open("Utils/config.yml"))
# -----------------------------------------------------------------------------
# LOAD MODELS
# -----------------------------------------------------------------------------
ASR_config = config.get("ASR_config", False)
ASR_path = config.get("ASR_path", False)
text_aligner = load_ASR_models(ASR_path, ASR_config)
F0_path = config.get("F0_path", False)
pitch_extractor = load_F0_models(F0_path)
BERT_path = config.get("PLBERT_dir", False)
plbert = load_plbert(BERT_path)
model_params = recursive_munch(config["model_params"])
model = build_model(model_params, text_aligner, pitch_extractor, plbert)
_ = [model[key].eval() for key in model]
_ = [model[key].to(device) for key in model]
params_whole = torch.load(
str(
cached_path(
"hf://yl4579/StyleTTS2-LibriTTS/Models/LibriTTS/epochs_2nd_00020.pth"
)
),
map_location="cpu",
)
params = params_whole["net"]
# Load model states
for key in model:
if key in params:
print(f"{key} loaded")
try:
model[key].load_state_dict(params[key])
except RuntimeError:
state_dict = params[key]
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
model[key].load_state_dict(new_state_dict, strict=False)
_ = [model[key].eval() for key in model]
sampler = DiffusionSampler(
model.diffusion.diffusion,
sampler=ADPM2Sampler(),
sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=3.0, rho=9.0),
clamp=False,
)
# -----------------------------------------------------------------------------
# INFERENCE
# -----------------------------------------------------------------------------
def inference(
text: str,
ref_s: torch.Tensor,
alpha: float = 0.3,
beta: float = 0.7,
diffusion_steps: int = 5,
embedding_scale: float = 1,
speed: float = 1.2,
):
"""
Perform TTS inference using StyleTTS2 architecture.
Args:
text (str): The input text to be synthesized.
ref_s (torch.Tensor): The reference style/predictor embedding.
alpha (float): Interpolation factor for the style encoder.
beta (float): Interpolation factor for the predictor encoder.
diffusion_steps (int): Number of diffusion steps.
embedding_scale (float): Scaling factor for the BERT embedding.
speed (float): Speed factor e.g. 1.2 will speed up the audio by 20%
Returns:
np.ndarray: Audio waveform (synthesized speech).
"""
text = text.strip()
# Phonemize
ps = global_phonemizer(text)
ps = word_tokenize(ps)
ps = " ".join(ps)
tokens = textclenaer(ps)
tokens.insert(0, 0) # Insert padding index at the start
tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)
with torch.no_grad():
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
text_mask = length_to_mask(input_lengths).to(device)
# Text encoder
t_en = model.text_encoder(tokens, input_lengths, text_mask)
# BERT duration encoding
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
# Sampler for style
noise = torch.randn((1, 256)).unsqueeze(1).to(device)
s_pred = sampler(
noise=noise,
embedding=bert_dur,
embedding_scale=embedding_scale,
features=ref_s,
num_steps=diffusion_steps,
).squeeze(1)
# Split the style vector
s_style = s_pred[:, 128:]
s_ref = s_pred[:, :128]
# Interpolate with ref_s
s_ref = alpha * s_ref + (1 - alpha) * ref_s[:, :128]
s_style = beta * s_style + (1 - beta) * ref_s[:, 128:]
# Predictor
d = model.predictor.text_encoder(d_en, s_style, input_lengths, text_mask)
x, _ = model.predictor.lstm(d)
duration = model.predictor.duration_proj(x)
duration = torch.sigmoid(duration).sum(axis=-1)
duration = duration / speed # change speed
# Create alignment
pred_dur = torch.round(duration.squeeze()).clamp(min=1)
pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))
c_frame = 0
for i in range(pred_aln_trg.size(0)):
pd = int(pred_dur[i].data)
pred_aln_trg[i, c_frame : c_frame + pd] = 1
c_frame += pd
# Encode prosody
en = d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device)
if model_params.decoder.type == "hifigan":
asr_new = torch.zeros_like(en)
asr_new[:, :, 0] = en[:, :, 0]
asr_new[:, :, 1:] = en[:, :, 0:-1]
en = asr_new
F0_pred, N_pred = model.predictor.F0Ntrain(en, s_style)
# ASR-based encoding
asr = t_en @ pred_aln_trg.unsqueeze(0).to(device)
if model_params.decoder.type == "hifigan":
asr_new = torch.zeros_like(asr)
asr_new[:, :, 0] = asr[:, :, 0]
asr_new[:, :, 1:] = asr[:, :, 0:-1]
asr = asr_new
out = model.decoder(asr, F0_pred, N_pred, s_ref.squeeze().unsqueeze(0))
# Return waveform without the last 50 samples (as per original code)
return out.squeeze().cpu().numpy()[..., :-50]
|