Spaces:
Running
Running
from math import floor, log, pi | |
from typing import Any, List, Optional, Sequence, Tuple, Union | |
from .utils import * | |
import torch | |
import torch.nn as nn | |
from einops import rearrange, reduce, repeat | |
from einops.layers.torch import Rearrange | |
from einops_exts import rearrange_many | |
from torch import Tensor, einsum | |
""" | |
Utils | |
""" | |
class AdaLayerNorm(nn.Module): | |
def __init__(self, style_dim, channels, eps=1e-5): | |
super().__init__() | |
self.channels = channels | |
self.eps = eps | |
self.fc = nn.Linear(style_dim, channels*2) | |
def forward(self, x, s): | |
x = x.transpose(-1, -2) | |
x = x.transpose(1, -1) | |
h = self.fc(s) | |
h = h.view(h.size(0), h.size(1), 1) | |
gamma, beta = torch.chunk(h, chunks=2, dim=1) | |
gamma, beta = gamma.transpose(1, -1), beta.transpose(1, -1) | |
x = F.layer_norm(x, (self.channels,), eps=self.eps) | |
x = (1 + gamma) * x + beta | |
return x.transpose(1, -1).transpose(-1, -2) | |
class StyleTransformer1d(nn.Module): | |
def __init__( | |
self, | |
num_layers: int, | |
channels: int, | |
num_heads: int, | |
head_features: int, | |
multiplier: int, | |
use_context_time: bool = True, | |
use_rel_pos: bool = False, | |
context_features_multiplier: int = 1, | |
rel_pos_num_buckets: Optional[int] = None, | |
rel_pos_max_distance: Optional[int] = None, | |
context_features: Optional[int] = None, | |
context_embedding_features: Optional[int] = None, | |
embedding_max_length: int = 512, | |
): | |
super().__init__() | |
self.blocks = nn.ModuleList( | |
[ | |
StyleTransformerBlock( | |
features=channels + context_embedding_features, | |
head_features=head_features, | |
num_heads=num_heads, | |
multiplier=multiplier, | |
style_dim=context_features, | |
use_rel_pos=use_rel_pos, | |
rel_pos_num_buckets=rel_pos_num_buckets, | |
rel_pos_max_distance=rel_pos_max_distance, | |
) | |
for i in range(num_layers) | |
] | |
) | |
self.to_out = nn.Sequential( | |
Rearrange("b t c -> b c t"), | |
nn.Conv1d( | |
in_channels=channels + context_embedding_features, | |
out_channels=channels, | |
kernel_size=1, | |
), | |
) | |
use_context_features = exists(context_features) | |
self.use_context_features = use_context_features | |
self.use_context_time = use_context_time | |
if use_context_time or use_context_features: | |
context_mapping_features = channels + context_embedding_features | |
self.to_mapping = nn.Sequential( | |
nn.Linear(context_mapping_features, context_mapping_features), | |
nn.GELU(), | |
nn.Linear(context_mapping_features, context_mapping_features), | |
nn.GELU(), | |
) | |
if use_context_time: | |
assert exists(context_mapping_features) | |
self.to_time = nn.Sequential( | |
TimePositionalEmbedding( | |
dim=channels, out_features=context_mapping_features | |
), | |
nn.GELU(), | |
) | |
if use_context_features: | |
assert exists(context_features) and exists(context_mapping_features) | |
self.to_features = nn.Sequential( | |
nn.Linear( | |
in_features=context_features, out_features=context_mapping_features | |
), | |
nn.GELU(), | |
) | |
self.fixed_embedding = FixedEmbedding( | |
max_length=embedding_max_length, features=context_embedding_features | |
) | |
def get_mapping( | |
self, time: Optional[Tensor] = None, features: Optional[Tensor] = None | |
) -> Optional[Tensor]: | |
"""Combines context time features and features into mapping""" | |
items, mapping = [], None | |
# Compute time features | |
if self.use_context_time: | |
assert_message = "use_context_time=True but no time features provided" | |
assert exists(time), assert_message | |
items += [self.to_time(time)] | |
# Compute features | |
if self.use_context_features: | |
assert_message = "context_features exists but no features provided" | |
assert exists(features), assert_message | |
items += [self.to_features(features)] | |
# Compute joint mapping | |
if self.use_context_time or self.use_context_features: | |
mapping = reduce(torch.stack(items), "n b m -> b m", "sum") | |
mapping = self.to_mapping(mapping) | |
return mapping | |
def run(self, x, time, embedding, features): | |
mapping = self.get_mapping(time, features) | |
x = torch.cat([x.expand(-1, embedding.size(1), -1), embedding], axis=-1) | |
mapping = mapping.unsqueeze(1).expand(-1, embedding.size(1), -1) | |
for block in self.blocks: | |
x = x + mapping | |
x = block(x, features) | |
x = x.mean(axis=1).unsqueeze(1) | |
x = self.to_out(x) | |
x = x.transpose(-1, -2) | |
return x | |
def forward(self, x: Tensor, | |
time: Tensor, | |
embedding_mask_proba: float = 0.0, | |
embedding: Optional[Tensor] = None, | |
features: Optional[Tensor] = None, | |
embedding_scale: float = 1.0) -> Tensor: | |
b, device = embedding.shape[0], embedding.device | |
fixed_embedding = self.fixed_embedding(embedding) | |
if embedding_mask_proba > 0.0: | |
# Randomly mask embedding | |
batch_mask = rand_bool( | |
shape=(b, 1, 1), proba=embedding_mask_proba, device=device | |
) | |
embedding = torch.where(batch_mask, fixed_embedding, embedding) | |
if embedding_scale != 1.0: | |
# Compute both normal and fixed embedding outputs | |
out = self.run(x, time, embedding=embedding, features=features) | |
out_masked = self.run(x, time, embedding=fixed_embedding, features=features) | |
# Scale conditional output using classifier-free guidance | |
return out_masked + (out - out_masked) * embedding_scale | |
else: | |
return self.run(x, time, embedding=embedding, features=features) | |
return x | |
class StyleTransformerBlock(nn.Module): | |
def __init__( | |
self, | |
features: int, | |
num_heads: int, | |
head_features: int, | |
style_dim: int, | |
multiplier: int, | |
use_rel_pos: bool, | |
rel_pos_num_buckets: Optional[int] = None, | |
rel_pos_max_distance: Optional[int] = None, | |
context_features: Optional[int] = None, | |
): | |
super().__init__() | |
self.use_cross_attention = exists(context_features) and context_features > 0 | |
self.attention = StyleAttention( | |
features=features, | |
style_dim=style_dim, | |
num_heads=num_heads, | |
head_features=head_features, | |
use_rel_pos=use_rel_pos, | |
rel_pos_num_buckets=rel_pos_num_buckets, | |
rel_pos_max_distance=rel_pos_max_distance, | |
) | |
if self.use_cross_attention: | |
self.cross_attention = StyleAttention( | |
features=features, | |
style_dim=style_dim, | |
num_heads=num_heads, | |
head_features=head_features, | |
context_features=context_features, | |
use_rel_pos=use_rel_pos, | |
rel_pos_num_buckets=rel_pos_num_buckets, | |
rel_pos_max_distance=rel_pos_max_distance, | |
) | |
self.feed_forward = FeedForward(features=features, multiplier=multiplier) | |
def forward(self, x: Tensor, s: Tensor, *, context: Optional[Tensor] = None) -> Tensor: | |
x = self.attention(x, s) + x | |
if self.use_cross_attention: | |
x = self.cross_attention(x, s, context=context) + x | |
x = self.feed_forward(x) + x | |
return x | |
class StyleAttention(nn.Module): | |
def __init__( | |
self, | |
features: int, | |
*, | |
style_dim: int, | |
head_features: int, | |
num_heads: int, | |
context_features: Optional[int] = None, | |
use_rel_pos: bool, | |
rel_pos_num_buckets: Optional[int] = None, | |
rel_pos_max_distance: Optional[int] = None, | |
): | |
super().__init__() | |
self.context_features = context_features | |
mid_features = head_features * num_heads | |
context_features = default(context_features, features) | |
self.norm = AdaLayerNorm(style_dim, features) | |
self.norm_context = AdaLayerNorm(style_dim, context_features) | |
self.to_q = nn.Linear( | |
in_features=features, out_features=mid_features, bias=False | |
) | |
self.to_kv = nn.Linear( | |
in_features=context_features, out_features=mid_features * 2, bias=False | |
) | |
self.attention = AttentionBase( | |
features, | |
num_heads=num_heads, | |
head_features=head_features, | |
use_rel_pos=use_rel_pos, | |
rel_pos_num_buckets=rel_pos_num_buckets, | |
rel_pos_max_distance=rel_pos_max_distance, | |
) | |
def forward(self, x: Tensor, s: Tensor, *, context: Optional[Tensor] = None) -> Tensor: | |
assert_message = "You must provide a context when using context_features" | |
assert not self.context_features or exists(context), assert_message | |
# Use context if provided | |
context = default(context, x) | |
# Normalize then compute q from input and k,v from context | |
x, context = self.norm(x, s), self.norm_context(context, s) | |
q, k, v = (self.to_q(x), *torch.chunk(self.to_kv(context), chunks=2, dim=-1)) | |
# Compute and return attention | |
return self.attention(q, k, v) | |
class Transformer1d(nn.Module): | |
def __init__( | |
self, | |
num_layers: int, | |
channels: int, | |
num_heads: int, | |
head_features: int, | |
multiplier: int, | |
use_context_time: bool = True, | |
use_rel_pos: bool = False, | |
context_features_multiplier: int = 1, | |
rel_pos_num_buckets: Optional[int] = None, | |
rel_pos_max_distance: Optional[int] = None, | |
context_features: Optional[int] = None, | |
context_embedding_features: Optional[int] = None, | |
embedding_max_length: int = 512, | |
): | |
super().__init__() | |
self.blocks = nn.ModuleList( | |
[ | |
TransformerBlock( | |
features=channels + context_embedding_features, | |
head_features=head_features, | |
num_heads=num_heads, | |
multiplier=multiplier, | |
use_rel_pos=use_rel_pos, | |
rel_pos_num_buckets=rel_pos_num_buckets, | |
rel_pos_max_distance=rel_pos_max_distance, | |
) | |
for i in range(num_layers) | |
] | |
) | |
self.to_out = nn.Sequential( | |
Rearrange("b t c -> b c t"), | |
nn.Conv1d( | |
in_channels=channels + context_embedding_features, | |
out_channels=channels, | |
kernel_size=1, | |
), | |
) | |
use_context_features = exists(context_features) | |
self.use_context_features = use_context_features | |
self.use_context_time = use_context_time | |
if use_context_time or use_context_features: | |
context_mapping_features = channels + context_embedding_features | |
self.to_mapping = nn.Sequential( | |
nn.Linear(context_mapping_features, context_mapping_features), | |
nn.GELU(), | |
nn.Linear(context_mapping_features, context_mapping_features), | |
nn.GELU(), | |
) | |
if use_context_time: | |
assert exists(context_mapping_features) | |
self.to_time = nn.Sequential( | |
TimePositionalEmbedding( | |
dim=channels, out_features=context_mapping_features | |
), | |
nn.GELU(), | |
) | |
if use_context_features: | |
assert exists(context_features) and exists(context_mapping_features) | |
self.to_features = nn.Sequential( | |
nn.Linear( | |
in_features=context_features, out_features=context_mapping_features | |
), | |
nn.GELU(), | |
) | |
self.fixed_embedding = FixedEmbedding( | |
max_length=embedding_max_length, features=context_embedding_features | |
) | |
def get_mapping( | |
self, time: Optional[Tensor] = None, features: Optional[Tensor] = None | |
) -> Optional[Tensor]: | |
"""Combines context time features and features into mapping""" | |
items, mapping = [], None | |
# Compute time features | |
if self.use_context_time: | |
assert_message = "use_context_time=True but no time features provided" | |
assert exists(time), assert_message | |
items += [self.to_time(time)] | |
# Compute features | |
if self.use_context_features: | |
assert_message = "context_features exists but no features provided" | |
assert exists(features), assert_message | |
items += [self.to_features(features)] | |
# Compute joint mapping | |
if self.use_context_time or self.use_context_features: | |
mapping = reduce(torch.stack(items), "n b m -> b m", "sum") | |
mapping = self.to_mapping(mapping) | |
return mapping | |
def run(self, x, time, embedding, features): | |
mapping = self.get_mapping(time, features) | |
x = torch.cat([x.expand(-1, embedding.size(1), -1), embedding], axis=-1) | |
mapping = mapping.unsqueeze(1).expand(-1, embedding.size(1), -1) | |
for block in self.blocks: | |
x = x + mapping | |
x = block(x) | |
x = x.mean(axis=1).unsqueeze(1) | |
x = self.to_out(x) | |
x = x.transpose(-1, -2) | |
return x | |
def forward(self, x: Tensor, | |
time: Tensor, | |
embedding_mask_proba: float = 0.0, | |
embedding: Optional[Tensor] = None, | |
features: Optional[Tensor] = None, | |
embedding_scale: float = 1.0) -> Tensor: | |
b, device = embedding.shape[0], embedding.device | |
fixed_embedding = self.fixed_embedding(embedding) | |
if embedding_mask_proba > 0.0: | |
# Randomly mask embedding | |
batch_mask = rand_bool( | |
shape=(b, 1, 1), proba=embedding_mask_proba, device=device | |
) | |
embedding = torch.where(batch_mask, fixed_embedding, embedding) | |
if embedding_scale != 1.0: | |
# Compute both normal and fixed embedding outputs | |
out = self.run(x, time, embedding=embedding, features=features) | |
out_masked = self.run(x, time, embedding=fixed_embedding, features=features) | |
# Scale conditional output using classifier-free guidance | |
return out_masked + (out - out_masked) * embedding_scale | |
else: | |
return self.run(x, time, embedding=embedding, features=features) | |
return x | |
""" | |
Attention Components | |
""" | |
class RelativePositionBias(nn.Module): | |
def __init__(self, num_buckets: int, max_distance: int, num_heads: int): | |
super().__init__() | |
self.num_buckets = num_buckets | |
self.max_distance = max_distance | |
self.num_heads = num_heads | |
self.relative_attention_bias = nn.Embedding(num_buckets, num_heads) | |
def _relative_position_bucket( | |
relative_position: Tensor, num_buckets: int, max_distance: int | |
): | |
num_buckets //= 2 | |
ret = (relative_position >= 0).to(torch.long) * num_buckets | |
n = torch.abs(relative_position) | |
max_exact = num_buckets // 2 | |
is_small = n < max_exact | |
val_if_large = ( | |
max_exact | |
+ ( | |
torch.log(n.float() / max_exact) | |
/ log(max_distance / max_exact) | |
* (num_buckets - max_exact) | |
).long() | |
) | |
val_if_large = torch.min( | |
val_if_large, torch.full_like(val_if_large, num_buckets - 1) | |
) | |
ret += torch.where(is_small, n, val_if_large) | |
return ret | |
def forward(self, num_queries: int, num_keys: int) -> Tensor: | |
i, j, device = num_queries, num_keys, self.relative_attention_bias.weight.device | |
q_pos = torch.arange(j - i, j, dtype=torch.long, device=device) | |
k_pos = torch.arange(j, dtype=torch.long, device=device) | |
rel_pos = rearrange(k_pos, "j -> 1 j") - rearrange(q_pos, "i -> i 1") | |
relative_position_bucket = self._relative_position_bucket( | |
rel_pos, num_buckets=self.num_buckets, max_distance=self.max_distance | |
) | |
bias = self.relative_attention_bias(relative_position_bucket) | |
bias = rearrange(bias, "m n h -> 1 h m n") | |
return bias | |
def FeedForward(features: int, multiplier: int) -> nn.Module: | |
mid_features = features * multiplier | |
return nn.Sequential( | |
nn.Linear(in_features=features, out_features=mid_features), | |
nn.GELU(), | |
nn.Linear(in_features=mid_features, out_features=features), | |
) | |
class AttentionBase(nn.Module): | |
def __init__( | |
self, | |
features: int, | |
*, | |
head_features: int, | |
num_heads: int, | |
use_rel_pos: bool, | |
out_features: Optional[int] = None, | |
rel_pos_num_buckets: Optional[int] = None, | |
rel_pos_max_distance: Optional[int] = None, | |
): | |
super().__init__() | |
self.scale = head_features ** -0.5 | |
self.num_heads = num_heads | |
self.use_rel_pos = use_rel_pos | |
mid_features = head_features * num_heads | |
if use_rel_pos: | |
assert exists(rel_pos_num_buckets) and exists(rel_pos_max_distance) | |
self.rel_pos = RelativePositionBias( | |
num_buckets=rel_pos_num_buckets, | |
max_distance=rel_pos_max_distance, | |
num_heads=num_heads, | |
) | |
if out_features is None: | |
out_features = features | |
self.to_out = nn.Linear(in_features=mid_features, out_features=out_features) | |
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor: | |
# Split heads | |
q, k, v = rearrange_many((q, k, v), "b n (h d) -> b h n d", h=self.num_heads) | |
# Compute similarity matrix | |
sim = einsum("... n d, ... m d -> ... n m", q, k) | |
sim = (sim + self.rel_pos(*sim.shape[-2:])) if self.use_rel_pos else sim | |
sim = sim * self.scale | |
# Get attention matrix with softmax | |
attn = sim.softmax(dim=-1) | |
# Compute values | |
out = einsum("... n m, ... m d -> ... n d", attn, v) | |
out = rearrange(out, "b h n d -> b n (h d)") | |
return self.to_out(out) | |
class Attention(nn.Module): | |
def __init__( | |
self, | |
features: int, | |
*, | |
head_features: int, | |
num_heads: int, | |
out_features: Optional[int] = None, | |
context_features: Optional[int] = None, | |
use_rel_pos: bool, | |
rel_pos_num_buckets: Optional[int] = None, | |
rel_pos_max_distance: Optional[int] = None, | |
): | |
super().__init__() | |
self.context_features = context_features | |
mid_features = head_features * num_heads | |
context_features = default(context_features, features) | |
self.norm = nn.LayerNorm(features) | |
self.norm_context = nn.LayerNorm(context_features) | |
self.to_q = nn.Linear( | |
in_features=features, out_features=mid_features, bias=False | |
) | |
self.to_kv = nn.Linear( | |
in_features=context_features, out_features=mid_features * 2, bias=False | |
) | |
self.attention = AttentionBase( | |
features, | |
out_features=out_features, | |
num_heads=num_heads, | |
head_features=head_features, | |
use_rel_pos=use_rel_pos, | |
rel_pos_num_buckets=rel_pos_num_buckets, | |
rel_pos_max_distance=rel_pos_max_distance, | |
) | |
def forward(self, x: Tensor, *, context: Optional[Tensor] = None) -> Tensor: | |
assert_message = "You must provide a context when using context_features" | |
assert not self.context_features or exists(context), assert_message | |
# Use context if provided | |
context = default(context, x) | |
# Normalize then compute q from input and k,v from context | |
x, context = self.norm(x), self.norm_context(context) | |
q, k, v = (self.to_q(x), *torch.chunk(self.to_kv(context), chunks=2, dim=-1)) | |
# Compute and return attention | |
return self.attention(q, k, v) | |
""" | |
Transformer Blocks | |
""" | |
class TransformerBlock(nn.Module): | |
def __init__( | |
self, | |
features: int, | |
num_heads: int, | |
head_features: int, | |
multiplier: int, | |
use_rel_pos: bool, | |
rel_pos_num_buckets: Optional[int] = None, | |
rel_pos_max_distance: Optional[int] = None, | |
context_features: Optional[int] = None, | |
): | |
super().__init__() | |
self.use_cross_attention = exists(context_features) and context_features > 0 | |
self.attention = Attention( | |
features=features, | |
num_heads=num_heads, | |
head_features=head_features, | |
use_rel_pos=use_rel_pos, | |
rel_pos_num_buckets=rel_pos_num_buckets, | |
rel_pos_max_distance=rel_pos_max_distance, | |
) | |
if self.use_cross_attention: | |
self.cross_attention = Attention( | |
features=features, | |
num_heads=num_heads, | |
head_features=head_features, | |
context_features=context_features, | |
use_rel_pos=use_rel_pos, | |
rel_pos_num_buckets=rel_pos_num_buckets, | |
rel_pos_max_distance=rel_pos_max_distance, | |
) | |
self.feed_forward = FeedForward(features=features, multiplier=multiplier) | |
def forward(self, x: Tensor, *, context: Optional[Tensor] = None) -> Tensor: | |
x = self.attention(x) + x | |
if self.use_cross_attention: | |
x = self.cross_attention(x, context=context) + x | |
x = self.feed_forward(x) + x | |
return x | |
""" | |
Time Embeddings | |
""" | |
class SinusoidalEmbedding(nn.Module): | |
def __init__(self, dim: int): | |
super().__init__() | |
self.dim = dim | |
def forward(self, x: Tensor) -> Tensor: | |
device, half_dim = x.device, self.dim // 2 | |
emb = torch.tensor(log(10000) / (half_dim - 1), device=device) | |
emb = torch.exp(torch.arange(half_dim, device=device) * -emb) | |
emb = rearrange(x, "i -> i 1") * rearrange(emb, "j -> 1 j") | |
return torch.cat((emb.sin(), emb.cos()), dim=-1) | |
class LearnedPositionalEmbedding(nn.Module): | |
"""Used for continuous time""" | |
def __init__(self, dim: int): | |
super().__init__() | |
assert (dim % 2) == 0 | |
half_dim = dim // 2 | |
self.weights = nn.Parameter(torch.randn(half_dim)) | |
def forward(self, x: Tensor) -> Tensor: | |
x = rearrange(x, "b -> b 1") | |
freqs = x * rearrange(self.weights, "d -> 1 d") * 2 * pi | |
fouriered = torch.cat((freqs.sin(), freqs.cos()), dim=-1) | |
fouriered = torch.cat((x, fouriered), dim=-1) | |
return fouriered | |
def TimePositionalEmbedding(dim: int, out_features: int) -> nn.Module: | |
return nn.Sequential( | |
LearnedPositionalEmbedding(dim), | |
nn.Linear(in_features=dim + 1, out_features=out_features), | |
) | |
class FixedEmbedding(nn.Module): | |
def __init__(self, max_length: int, features: int): | |
super().__init__() | |
self.max_length = max_length | |
self.embedding = nn.Embedding(max_length, features) | |
def forward(self, x: Tensor) -> Tensor: | |
batch_size, length, device = *x.shape[0:2], x.device | |
assert_message = "Input sequence length must be <= max_length" | |
assert length <= self.max_length, assert_message | |
position = torch.arange(length, device=device) | |
fixed_embedding = self.embedding(position) | |
fixed_embedding = repeat(fixed_embedding, "n d -> b n d", b=batch_size) | |
return fixed_embedding | |