import gradio as gr from transformers import AutoTokenizer, AutoModelForSeq2SeqLM # Model in Hugging Hub tokenizer = AutoTokenizer.from_pretrained("Andresmfs/st5s-es-inclusivo") model = AutoModelForSeq2SeqLM.from_pretrained("Andresmfs/st5s-es-inclusivo") def make_neutral(phrase): # Define prompt for converting gendered text to neutral input_ids = tokenizer(phrase, return_tensors="pt").input_ids # Call the LLM to generate neutral text outputs = model.generate(input_ids) return tokenizer.decode(outputs[0], skip_special_tokens=True) theme = gr.themes.Default(primary_hue="blue").set( loader_color="#FF0000", slider_color="#FF0000", ) with gr.Blocks(theme=theme) as demo: iface = gr.Interface( fn=make_neutral, inputs="text", outputs="text", title="Gender-Neutralizer", description="Enter a gendered phrase and get it converted into neutral form." ) iface.launch()