Spaces:
Running
Running
import re | |
import jaconv | |
import gradio as gr | |
from transformers import AutoTokenizer, AutoFeatureExtractor, VisionEncoderDecoderModel | |
from PIL import Image | |
import torch | |
tokenizer = AutoTokenizer.from_pretrained("kha-white/manga-ocr-base") | |
model = VisionEncoderDecoderModel.from_pretrained("kha-white/manga-ocr-base") | |
feature_extractor = AutoFeatureExtractor.from_pretrained("kha-white/manga-ocr-base") | |
examples = ["00.jpg", "01.jpg", "02.jpg", "03.jpg", "04.jpg", "05.jpg", "06.jpg", "07.jpg", "08.jpg", "09.jpg", "10.jpg", "11.jpg"] | |
def post_process(text): | |
text = ''.join(text.split()) | |
text = text.replace('…', '...') | |
text = re.sub('[・.]{2,}', lambda x: (x.end() - x.start()) * '.', text) | |
text = jaconv.h2z(text, ascii=True, digit=True) | |
return text | |
def manga_ocr(img): | |
img = img.convert('L').convert('RGB') | |
pixel_values = feature_extractor(img, return_tensors="pt").pixel_values | |
output = model.generate(pixel_values)[0] | |
text = tokenizer.decode(output, skip_special_tokens=True) | |
text = post_process(text) | |
return text | |
iface = gr.Interface( | |
fn=manga_ocr, | |
inputs=[gr.inputs.Image(label="Input", type="pil")], | |
outputs="text", | |
layout="horizontal", | |
theme="huggingface", | |
title="Manga OCR", | |
description="Optical Character Recognization for Japanese Texts with focus on Mangas. The model is trained by kha-white with Github link: <a href=\"https://github.com/kha-white/manga-ocr\">manga-ocr</a> while the Space App is made by me.", | |
allow_flagging='never', | |
examples=examples, | |
article = "Author: <a href=\"https://huggingface.co/gryan-galario\">Gryan Galario</a>", | |
) | |
iface.launch() |