Spaces:
Running
Running
File size: 30,650 Bytes
9b2107c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 |
import os
import re
import textwrap
from functools import cached_property
import pypinyin
import torch
from hangul_romanize import Transliter
from hangul_romanize.rule import academic
from num2words import num2words
from spacy.lang.ar import Arabic
from spacy.lang.en import English
from spacy.lang.es import Spanish
from spacy.lang.ja import Japanese
from spacy.lang.zh import Chinese
from tokenizers import Tokenizer
from TTS.tts.layers.xtts.zh_num2words import TextNorm as zh_num2words
def get_spacy_lang(lang):
if lang == "zh":
return Chinese()
elif lang == "ja":
return Japanese()
elif lang == "ar":
return Arabic()
elif lang == "es":
return Spanish()
else:
# For most languages, Enlish does the job
return English()
def split_sentence(text, lang, text_split_length=250):
"""Preprocess the input text"""
text_splits = []
if text_split_length is not None and len(text) >= text_split_length:
text_splits.append("")
nlp = get_spacy_lang(lang)
nlp.add_pipe("sentencizer")
doc = nlp(text)
for sentence in doc.sents:
if len(text_splits[-1]) + len(str(sentence)) <= text_split_length:
# if the last sentence + the current sentence is less than the text_split_length
# then add the current sentence to the last sentence
text_splits[-1] += " " + str(sentence)
text_splits[-1] = text_splits[-1].lstrip()
elif len(str(sentence)) > text_split_length:
# if the current sentence is greater than the text_split_length
for line in textwrap.wrap(
str(sentence),
width=text_split_length,
drop_whitespace=True,
break_on_hyphens=False,
tabsize=1,
):
text_splits.append(str(line))
else:
text_splits.append(str(sentence))
if len(text_splits) > 1:
if text_splits[0] == "":
del text_splits[0]
else:
text_splits = [text.lstrip()]
return text_splits
_whitespace_re = re.compile(r"\s+")
# List of (regular expression, replacement) pairs for abbreviations:
_abbreviations = {
"en": [
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
for x in [
("mrs", "misess"),
("mr", "mister"),
("dr", "doctor"),
("st", "saint"),
("co", "company"),
("jr", "junior"),
("maj", "major"),
("gen", "general"),
("drs", "doctors"),
("rev", "reverend"),
("lt", "lieutenant"),
("hon", "honorable"),
("sgt", "sergeant"),
("capt", "captain"),
("esq", "esquire"),
("ltd", "limited"),
("col", "colonel"),
("ft", "fort"),
]
],
"es": [
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
for x in [
("sra", "señora"),
("sr", "señor"),
("dr", "doctor"),
("dra", "doctora"),
("st", "santo"),
("co", "compañía"),
("jr", "junior"),
("ltd", "limitada"),
]
],
"fr": [
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
for x in [
("mme", "madame"),
("mr", "monsieur"),
("dr", "docteur"),
("st", "saint"),
("co", "compagnie"),
("jr", "junior"),
("ltd", "limitée"),
]
],
"de": [
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
for x in [
("fr", "frau"),
("dr", "doktor"),
("st", "sankt"),
("co", "firma"),
("jr", "junior"),
]
],
"pt": [
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
for x in [
("sra", "senhora"),
("sr", "senhor"),
("dr", "doutor"),
("dra", "doutora"),
("st", "santo"),
("co", "companhia"),
("jr", "júnior"),
("ltd", "limitada"),
]
],
"it": [
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
for x in [
# ("sig.ra", "signora"),
("sig", "signore"),
("dr", "dottore"),
("st", "santo"),
("co", "compagnia"),
("jr", "junior"),
("ltd", "limitata"),
]
],
"pl": [
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
for x in [
("p", "pani"),
("m", "pan"),
("dr", "doktor"),
("sw", "święty"),
("jr", "junior"),
]
],
"ar": [
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
for x in [
# There are not many common abbreviations in Arabic as in English.
]
],
"zh": [
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
for x in [
# Chinese doesn't typically use abbreviations in the same way as Latin-based scripts.
]
],
"cs": [
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
for x in [
("dr", "doktor"), # doctor
("ing", "inženýr"), # engineer
("p", "pan"), # Could also map to pani for woman but no easy way to do it
# Other abbreviations would be specialized and not as common.
]
],
"ru": [
(re.compile("\\b%s\\b" % x[0], re.IGNORECASE), x[1])
for x in [
("г-жа", "госпожа"), # Mrs.
("г-н", "господин"), # Mr.
("д-р", "доктор"), # doctor
# Other abbreviations are less common or specialized.
]
],
"nl": [
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
for x in [
("dhr", "de heer"), # Mr.
("mevr", "mevrouw"), # Mrs.
("dr", "dokter"), # doctor
("jhr", "jonkheer"), # young lord or nobleman
# Dutch uses more abbreviations, but these are the most common ones.
]
],
"tr": [
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
for x in [
("b", "bay"), # Mr.
("byk", "büyük"), # büyük
("dr", "doktor"), # doctor
# Add other Turkish abbreviations here if needed.
]
],
"hu": [
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
for x in [
("dr", "doktor"), # doctor
("b", "bácsi"), # Mr.
("nőv", "nővér"), # nurse
# Add other Hungarian abbreviations here if needed.
]
],
"ko": [
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
for x in [
# Korean doesn't typically use abbreviations in the same way as Latin-based scripts.
]
],
}
def expand_abbreviations_multilingual(text, lang="en"):
for regex, replacement in _abbreviations[lang]:
text = re.sub(regex, replacement, text)
return text
_symbols_multilingual = {
"en": [
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
for x in [
("&", " and "),
("@", " at "),
("%", " percent "),
("#", " hash "),
("$", " dollar "),
("£", " pound "),
("°", " degree "),
]
],
"es": [
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
for x in [
("&", " y "),
("@", " arroba "),
("%", " por ciento "),
("#", " numeral "),
("$", " dolar "),
("£", " libra "),
("°", " grados "),
]
],
"fr": [
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
for x in [
("&", " et "),
("@", " arobase "),
("%", " pour cent "),
("#", " dièse "),
("$", " dollar "),
("£", " livre "),
("°", " degrés "),
]
],
"de": [
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
for x in [
("&", " und "),
("@", " at "),
("%", " prozent "),
("#", " raute "),
("$", " dollar "),
("£", " pfund "),
("°", " grad "),
]
],
"pt": [
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
for x in [
("&", " e "),
("@", " arroba "),
("%", " por cento "),
("#", " cardinal "),
("$", " dólar "),
("£", " libra "),
("°", " graus "),
]
],
"it": [
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
for x in [
("&", " e "),
("@", " chiocciola "),
("%", " per cento "),
("#", " cancelletto "),
("$", " dollaro "),
("£", " sterlina "),
("°", " gradi "),
]
],
"pl": [
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
for x in [
("&", " i "),
("@", " małpa "),
("%", " procent "),
("#", " krzyżyk "),
("$", " dolar "),
("£", " funt "),
("°", " stopnie "),
]
],
"ar": [
# Arabic
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
for x in [
("&", " و "),
("@", " على "),
("%", " في المئة "),
("#", " رقم "),
("$", " دولار "),
("£", " جنيه "),
("°", " درجة "),
]
],
"zh": [
# Chinese
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
for x in [
("&", " 和 "),
("@", " 在 "),
("%", " 百分之 "),
("#", " 号 "),
("$", " 美元 "),
("£", " 英镑 "),
("°", " 度 "),
]
],
"cs": [
# Czech
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
for x in [
("&", " a "),
("@", " na "),
("%", " procento "),
("#", " křížek "),
("$", " dolar "),
("£", " libra "),
("°", " stupně "),
]
],
"ru": [
# Russian
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
for x in [
("&", " и "),
("@", " собака "),
("%", " процентов "),
("#", " номер "),
("$", " доллар "),
("£", " фунт "),
("°", " градус "),
]
],
"nl": [
# Dutch
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
for x in [
("&", " en "),
("@", " bij "),
("%", " procent "),
("#", " hekje "),
("$", " dollar "),
("£", " pond "),
("°", " graden "),
]
],
"tr": [
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
for x in [
("&", " ve "),
("@", " at "),
("%", " yüzde "),
("#", " diyez "),
("$", " dolar "),
("£", " sterlin "),
("°", " derece "),
]
],
"hu": [
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
for x in [
("&", " és "),
("@", " kukac "),
("%", " százalék "),
("#", " kettőskereszt "),
("$", " dollár "),
("£", " font "),
("°", " fok "),
]
],
"ko": [
# Korean
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
for x in [
("&", " 그리고 "),
("@", " 에 "),
("%", " 퍼센트 "),
("#", " 번호 "),
("$", " 달러 "),
("£", " 파운드 "),
("°", " 도 "),
]
],
}
def expand_symbols_multilingual(text, lang="en"):
for regex, replacement in _symbols_multilingual[lang]:
text = re.sub(regex, replacement, text)
text = text.replace(" ", " ") # Ensure there are no double spaces
return text.strip()
_ordinal_re = {
"en": re.compile(r"([0-9]+)(st|nd|rd|th)"),
"es": re.compile(r"([0-9]+)(º|ª|er|o|a|os|as)"),
"fr": re.compile(r"([0-9]+)(º|ª|er|re|e|ème)"),
"de": re.compile(r"([0-9]+)(st|nd|rd|th|º|ª|\.(?=\s|$))"),
"pt": re.compile(r"([0-9]+)(º|ª|o|a|os|as)"),
"it": re.compile(r"([0-9]+)(º|°|ª|o|a|i|e)"),
"pl": re.compile(r"([0-9]+)(º|ª|st|nd|rd|th)"),
"ar": re.compile(r"([0-9]+)(ون|ين|ث|ر|ى)"),
"cs": re.compile(r"([0-9]+)\.(?=\s|$)"), # In Czech, a dot is often used after the number to indicate ordinals.
"ru": re.compile(r"([0-9]+)(-й|-я|-е|-ое|-ье|-го)"),
"nl": re.compile(r"([0-9]+)(de|ste|e)"),
"tr": re.compile(r"([0-9]+)(\.|inci|nci|uncu|üncü|\.)"),
"hu": re.compile(r"([0-9]+)(\.|adik|edik|odik|edik|ödik|ödike|ik)"),
"ko": re.compile(r"([0-9]+)(번째|번|차|째)"),
}
_number_re = re.compile(r"[0-9]+")
_currency_re = {
"USD": re.compile(r"((\$[0-9\.\,]*[0-9]+)|([0-9\.\,]*[0-9]+\$))"),
"GBP": re.compile(r"((£[0-9\.\,]*[0-9]+)|([0-9\.\,]*[0-9]+£))"),
"EUR": re.compile(r"(([0-9\.\,]*[0-9]+€)|((€[0-9\.\,]*[0-9]+)))"),
}
_comma_number_re = re.compile(r"\b\d{1,3}(,\d{3})*(\.\d+)?\b")
_dot_number_re = re.compile(r"\b\d{1,3}(.\d{3})*(\,\d+)?\b")
_decimal_number_re = re.compile(r"([0-9]+[.,][0-9]+)")
def _remove_commas(m):
text = m.group(0)
if "," in text:
text = text.replace(",", "")
return text
def _remove_dots(m):
text = m.group(0)
if "." in text:
text = text.replace(".", "")
return text
def _expand_decimal_point(m, lang="en"):
amount = m.group(1).replace(",", ".")
return num2words(float(amount), lang=lang if lang != "cs" else "cz")
def _expand_currency(m, lang="en", currency="USD"):
amount = float((re.sub(r"[^\d.]", "", m.group(0).replace(",", "."))))
full_amount = num2words(amount, to="currency", currency=currency, lang=lang if lang != "cs" else "cz")
and_equivalents = {
"en": ", ",
"es": " con ",
"fr": " et ",
"de": " und ",
"pt": " e ",
"it": " e ",
"pl": ", ",
"cs": ", ",
"ru": ", ",
"nl": ", ",
"ar": ", ",
"tr": ", ",
"hu": ", ",
"ko": ", ",
}
if amount.is_integer():
last_and = full_amount.rfind(and_equivalents[lang])
if last_and != -1:
full_amount = full_amount[:last_and]
return full_amount
def _expand_ordinal(m, lang="en"):
return num2words(int(m.group(1)), ordinal=True, lang=lang if lang != "cs" else "cz")
def _expand_number(m, lang="en"):
return num2words(int(m.group(0)), lang=lang if lang != "cs" else "cz")
def expand_numbers_multilingual(text, lang="en"):
if lang == "zh":
text = zh_num2words()(text)
else:
if lang in ["en", "ru"]:
text = re.sub(_comma_number_re, _remove_commas, text)
else:
text = re.sub(_dot_number_re, _remove_dots, text)
try:
text = re.sub(_currency_re["GBP"], lambda m: _expand_currency(m, lang, "GBP"), text)
text = re.sub(_currency_re["USD"], lambda m: _expand_currency(m, lang, "USD"), text)
text = re.sub(_currency_re["EUR"], lambda m: _expand_currency(m, lang, "EUR"), text)
except:
pass
if lang != "tr":
text = re.sub(_decimal_number_re, lambda m: _expand_decimal_point(m, lang), text)
text = re.sub(_ordinal_re[lang], lambda m: _expand_ordinal(m, lang), text)
text = re.sub(_number_re, lambda m: _expand_number(m, lang), text)
return text
def lowercase(text):
return text.lower()
def collapse_whitespace(text):
return re.sub(_whitespace_re, " ", text)
def multilingual_cleaners(text, lang):
text = text.replace('"', "")
if lang == "tr":
text = text.replace("İ", "i")
text = text.replace("Ö", "ö")
text = text.replace("Ü", "ü")
text = lowercase(text)
text = expand_numbers_multilingual(text, lang)
text = expand_abbreviations_multilingual(text, lang)
text = expand_symbols_multilingual(text, lang=lang)
text = collapse_whitespace(text)
return text
def basic_cleaners(text):
"""Basic pipeline that lowercases and collapses whitespace without transliteration."""
text = lowercase(text)
text = collapse_whitespace(text)
return text
def chinese_transliterate(text):
return "".join(
[p[0] for p in pypinyin.pinyin(text, style=pypinyin.Style.TONE3, heteronym=False, neutral_tone_with_five=True)]
)
def japanese_cleaners(text, katsu):
text = katsu.romaji(text)
text = lowercase(text)
return text
def korean_transliterate(text):
r = Transliter(academic)
return r.translit(text)
DEFAULT_VOCAB_FILE = os.path.join(os.path.dirname(os.path.realpath(__file__)), "../data/tokenizer.json")
class VoiceBpeTokenizer:
def __init__(self, vocab_file=None):
self.tokenizer = None
if vocab_file is not None:
self.tokenizer = Tokenizer.from_file(vocab_file)
self.char_limits = {
"en": 250,
"de": 253,
"fr": 273,
"es": 239,
"it": 213,
"pt": 203,
"pl": 224,
"zh": 82,
"ar": 166,
"cs": 186,
"ru": 182,
"nl": 251,
"tr": 226,
"ja": 71,
"hu": 224,
"ko": 95,
}
@cached_property
def katsu(self):
import cutlet
return cutlet.Cutlet()
def check_input_length(self, txt, lang):
lang = lang.split("-")[0] # remove the region
limit = self.char_limits.get(lang, 250)
if len(txt) > limit:
print(
f"[!] Warning: The text length exceeds the character limit of {limit} for language '{lang}', this might cause truncated audio."
)
def preprocess_text(self, txt, lang):
if lang in {"ar", "cs", "de", "en", "es", "fr", "hu", "it", "nl", "pl", "pt", "ru", "tr", "zh", "ko"}:
txt = multilingual_cleaners(txt, lang)
if lang == "zh":
txt = chinese_transliterate(txt)
if lang == "ko":
txt = korean_transliterate(txt)
elif lang == "ja":
txt = japanese_cleaners(txt, self.katsu)
else:
raise NotImplementedError(f"Language '{lang}' is not supported.")
return txt
def encode(self, txt, lang):
lang = lang.split("-")[0] # remove the region
self.check_input_length(txt, lang)
txt = self.preprocess_text(txt, lang)
lang = "zh-cn" if lang == "zh" else lang
txt = f"[{lang}]{txt}"
txt = txt.replace(" ", "[SPACE]")
return self.tokenizer.encode(txt).ids
def decode(self, seq):
if isinstance(seq, torch.Tensor):
seq = seq.cpu().numpy()
txt = self.tokenizer.decode(seq, skip_special_tokens=False).replace(" ", "")
txt = txt.replace("[SPACE]", " ")
txt = txt.replace("[STOP]", "")
txt = txt.replace("[UNK]", "")
return txt
def __len__(self):
return self.tokenizer.get_vocab_size()
def get_number_tokens(self):
return max(self.tokenizer.get_vocab().values()) + 1
def test_expand_numbers_multilingual():
test_cases = [
# English
("In 12.5 seconds.", "In twelve point five seconds.", "en"),
("There were 50 soldiers.", "There were fifty soldiers.", "en"),
("This is a 1st test", "This is a first test", "en"),
("That will be $20 sir.", "That will be twenty dollars sir.", "en"),
("That will be 20€ sir.", "That will be twenty euro sir.", "en"),
("That will be 20.15€ sir.", "That will be twenty euro, fifteen cents sir.", "en"),
("That's 100,000.5.", "That's one hundred thousand point five.", "en"),
# French
("En 12,5 secondes.", "En douze virgule cinq secondes.", "fr"),
("Il y avait 50 soldats.", "Il y avait cinquante soldats.", "fr"),
("Ceci est un 1er test", "Ceci est un premier test", "fr"),
("Cela vous fera $20 monsieur.", "Cela vous fera vingt dollars monsieur.", "fr"),
("Cela vous fera 20€ monsieur.", "Cela vous fera vingt euros monsieur.", "fr"),
("Cela vous fera 20,15€ monsieur.", "Cela vous fera vingt euros et quinze centimes monsieur.", "fr"),
("Ce sera 100.000,5.", "Ce sera cent mille virgule cinq.", "fr"),
# German
("In 12,5 Sekunden.", "In zwölf Komma fünf Sekunden.", "de"),
("Es gab 50 Soldaten.", "Es gab fünfzig Soldaten.", "de"),
("Dies ist ein 1. Test", "Dies ist ein erste Test", "de"), # Issue with gender
("Das macht $20 Herr.", "Das macht zwanzig Dollar Herr.", "de"),
("Das macht 20€ Herr.", "Das macht zwanzig Euro Herr.", "de"),
("Das macht 20,15€ Herr.", "Das macht zwanzig Euro und fünfzehn Cent Herr.", "de"),
# Spanish
("En 12,5 segundos.", "En doce punto cinco segundos.", "es"),
("Había 50 soldados.", "Había cincuenta soldados.", "es"),
("Este es un 1er test", "Este es un primero test", "es"),
("Eso le costará $20 señor.", "Eso le costará veinte dólares señor.", "es"),
("Eso le costará 20€ señor.", "Eso le costará veinte euros señor.", "es"),
("Eso le costará 20,15€ señor.", "Eso le costará veinte euros con quince céntimos señor.", "es"),
# Italian
("In 12,5 secondi.", "In dodici virgola cinque secondi.", "it"),
("C'erano 50 soldati.", "C'erano cinquanta soldati.", "it"),
("Questo è un 1° test", "Questo è un primo test", "it"),
("Ti costerà $20 signore.", "Ti costerà venti dollari signore.", "it"),
("Ti costerà 20€ signore.", "Ti costerà venti euro signore.", "it"),
("Ti costerà 20,15€ signore.", "Ti costerà venti euro e quindici centesimi signore.", "it"),
# Portuguese
("Em 12,5 segundos.", "Em doze vírgula cinco segundos.", "pt"),
("Havia 50 soldados.", "Havia cinquenta soldados.", "pt"),
("Este é um 1º teste", "Este é um primeiro teste", "pt"),
("Isso custará $20 senhor.", "Isso custará vinte dólares senhor.", "pt"),
("Isso custará 20€ senhor.", "Isso custará vinte euros senhor.", "pt"),
(
"Isso custará 20,15€ senhor.",
"Isso custará vinte euros e quinze cêntimos senhor.",
"pt",
), # "cêntimos" should be "centavos" num2words issue
# Polish
("W 12,5 sekundy.", "W dwanaście przecinek pięć sekundy.", "pl"),
("Było 50 żołnierzy.", "Było pięćdziesiąt żołnierzy.", "pl"),
("To będzie kosztować 20€ panie.", "To będzie kosztować dwadzieścia euro panie.", "pl"),
("To będzie kosztować 20,15€ panie.", "To będzie kosztować dwadzieścia euro, piętnaście centów panie.", "pl"),
# Arabic
("في الـ 12,5 ثانية.", "في الـ اثنا عشر , خمسون ثانية.", "ar"),
("كان هناك 50 جنديًا.", "كان هناك خمسون جنديًا.", "ar"),
# ("ستكون النتيجة $20 يا سيد.", 'ستكون النتيجة عشرون دولار يا سيد.', 'ar'), # $ and € are mising from num2words
# ("ستكون النتيجة 20€ يا سيد.", 'ستكون النتيجة عشرون يورو يا سيد.', 'ar'),
# Czech
("Za 12,5 vteřiny.", "Za dvanáct celá pět vteřiny.", "cs"),
("Bylo tam 50 vojáků.", "Bylo tam padesát vojáků.", "cs"),
("To bude stát 20€ pane.", "To bude stát dvacet euro pane.", "cs"),
("To bude 20.15€ pane.", "To bude dvacet euro, patnáct centů pane.", "cs"),
# Russian
("Через 12.5 секунды.", "Через двенадцать запятая пять секунды.", "ru"),
("Там было 50 солдат.", "Там было пятьдесят солдат.", "ru"),
("Это будет 20.15€ сэр.", "Это будет двадцать евро, пятнадцать центов сэр.", "ru"),
("Это будет стоить 20€ господин.", "Это будет стоить двадцать евро господин.", "ru"),
# Dutch
("In 12,5 seconden.", "In twaalf komma vijf seconden.", "nl"),
("Er waren 50 soldaten.", "Er waren vijftig soldaten.", "nl"),
("Dat wordt dan $20 meneer.", "Dat wordt dan twintig dollar meneer.", "nl"),
("Dat wordt dan 20€ meneer.", "Dat wordt dan twintig euro meneer.", "nl"),
# Chinese (Simplified)
("在12.5秒内", "在十二点五秒内", "zh"),
("有50名士兵", "有五十名士兵", "zh"),
# ("那将是$20先生", '那将是二十美元先生', 'zh'), currency doesn't work
# ("那将是20€先生", '那将是二十欧元先生', 'zh'),
# Turkish
# ("12,5 saniye içinde.", 'On iki virgül beş saniye içinde.', 'tr'), # decimal doesn't work for TR
("50 asker vardı.", "elli asker vardı.", "tr"),
("Bu 1. test", "Bu birinci test", "tr"),
# ("Bu 100.000,5.", 'Bu yüz bin virgül beş.', 'tr'),
# Hungarian
("12,5 másodperc alatt.", "tizenkettő egész öt tized másodperc alatt.", "hu"),
("50 katona volt.", "ötven katona volt.", "hu"),
("Ez az 1. teszt", "Ez az első teszt", "hu"),
# Korean
("12.5 초 안에.", "십이 점 다섯 초 안에.", "ko"),
("50 명의 병사가 있었다.", "오십 명의 병사가 있었다.", "ko"),
("이것은 1 번째 테스트입니다", "이것은 첫 번째 테스트입니다", "ko"),
]
for a, b, lang in test_cases:
out = expand_numbers_multilingual(a, lang=lang)
assert out == b, f"'{out}' vs '{b}'"
def test_abbreviations_multilingual():
test_cases = [
# English
("Hello Mr. Smith.", "Hello mister Smith.", "en"),
("Dr. Jones is here.", "doctor Jones is here.", "en"),
# Spanish
("Hola Sr. Garcia.", "Hola señor Garcia.", "es"),
("La Dra. Martinez es muy buena.", "La doctora Martinez es muy buena.", "es"),
# French
("Bonjour Mr. Dupond.", "Bonjour monsieur Dupond.", "fr"),
("Mme. Moreau est absente aujourd'hui.", "madame Moreau est absente aujourd'hui.", "fr"),
# German
("Frau Dr. Müller ist sehr klug.", "Frau doktor Müller ist sehr klug.", "de"),
# Portuguese
("Olá Sr. Silva.", "Olá senhor Silva.", "pt"),
("Dra. Costa, você está disponível?", "doutora Costa, você está disponível?", "pt"),
# Italian
("Buongiorno, Sig. Rossi.", "Buongiorno, signore Rossi.", "it"),
# ("Sig.ra Bianchi, posso aiutarti?", 'signora Bianchi, posso aiutarti?', 'it'), # Issue with matching that pattern
# Polish
("Dzień dobry, P. Kowalski.", "Dzień dobry, pani Kowalski.", "pl"),
("M. Nowak, czy mogę zadać pytanie?", "pan Nowak, czy mogę zadać pytanie?", "pl"),
# Czech
("P. Novák", "pan Novák", "cs"),
("Dr. Vojtěch", "doktor Vojtěch", "cs"),
# Dutch
("Dhr. Jansen", "de heer Jansen", "nl"),
("Mevr. de Vries", "mevrouw de Vries", "nl"),
# Russian
("Здравствуйте Г-н Иванов.", "Здравствуйте господин Иванов.", "ru"),
("Д-р Смирнов здесь, чтобы увидеть вас.", "доктор Смирнов здесь, чтобы увидеть вас.", "ru"),
# Turkish
("Merhaba B. Yılmaz.", "Merhaba bay Yılmaz.", "tr"),
("Dr. Ayşe burada.", "doktor Ayşe burada.", "tr"),
# Hungarian
("Dr. Szabó itt van.", "doktor Szabó itt van.", "hu"),
]
for a, b, lang in test_cases:
out = expand_abbreviations_multilingual(a, lang=lang)
assert out == b, f"'{out}' vs '{b}'"
def test_symbols_multilingual():
test_cases = [
("I have 14% battery", "I have 14 percent battery", "en"),
("Te veo @ la fiesta", "Te veo arroba la fiesta", "es"),
("J'ai 14° de fièvre", "J'ai 14 degrés de fièvre", "fr"),
("Die Rechnung beträgt £ 20", "Die Rechnung beträgt pfund 20", "de"),
("O meu email é ana&joao@gmail.com", "O meu email é ana e joao arroba gmail.com", "pt"),
("linguaggio di programmazione C#", "linguaggio di programmazione C cancelletto", "it"),
("Moja temperatura to 36.6°", "Moja temperatura to 36.6 stopnie", "pl"),
("Mám 14% baterie", "Mám 14 procento baterie", "cs"),
("Těším se na tebe @ party", "Těším se na tebe na party", "cs"),
("У меня 14% заряда", "У меня 14 процентов заряда", "ru"),
("Я буду @ дома", "Я буду собака дома", "ru"),
("Ik heb 14% batterij", "Ik heb 14 procent batterij", "nl"),
("Ik zie je @ het feest", "Ik zie je bij het feest", "nl"),
("لدي 14% في البطارية", "لدي 14 في المئة في البطارية", "ar"),
("我的电量为 14%", "我的电量为 14 百分之", "zh"),
("Pilim %14 dolu.", "Pilim yüzde 14 dolu.", "tr"),
("Az akkumulátorom töltöttsége 14%", "Az akkumulátorom töltöttsége 14 százalék", "hu"),
("배터리 잔량이 14%입니다.", "배터리 잔량이 14 퍼센트입니다.", "ko"),
]
for a, b, lang in test_cases:
out = expand_symbols_multilingual(a, lang=lang)
assert out == b, f"'{out}' vs '{b}'"
if __name__ == "__main__":
test_expand_numbers_multilingual()
test_abbreviations_multilingual()
test_symbols_multilingual()
|