Spaces:
Sleeping
Sleeping
File size: 15,546 Bytes
9b2107c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 |
from io import BytesIO
from typing import Tuple
import librosa
import numpy as np
import scipy
import soundfile as sf
from librosa import magphase, pyin
# For using kwargs
# pylint: disable=unused-argument
def build_mel_basis(
*,
sample_rate: int = None,
fft_size: int = None,
num_mels: int = None,
mel_fmax: int = None,
mel_fmin: int = None,
**kwargs,
) -> np.ndarray:
"""Build melspectrogram basis.
Returns:
np.ndarray: melspectrogram basis.
"""
if mel_fmax is not None:
assert mel_fmax <= sample_rate // 2
assert mel_fmax - mel_fmin > 0
return librosa.filters.mel(sr=sample_rate, n_fft=fft_size, n_mels=num_mels, fmin=mel_fmin, fmax=mel_fmax)
def millisec_to_length(
*, frame_length_ms: int = None, frame_shift_ms: int = None, sample_rate: int = None, **kwargs
) -> Tuple[int, int]:
"""Compute hop and window length from milliseconds.
Returns:
Tuple[int, int]: hop length and window length for STFT.
"""
factor = frame_length_ms / frame_shift_ms
assert (factor).is_integer(), " [!] frame_shift_ms should divide frame_length_ms"
win_length = int(frame_length_ms / 1000.0 * sample_rate)
hop_length = int(win_length / float(factor))
return win_length, hop_length
def _log(x, base):
if base == 10:
return np.log10(x)
return np.log(x)
def _exp(x, base):
if base == 10:
return np.power(10, x)
return np.exp(x)
def amp_to_db(*, x: np.ndarray = None, gain: float = 1, base: int = 10, **kwargs) -> np.ndarray:
"""Convert amplitude values to decibels.
Args:
x (np.ndarray): Amplitude spectrogram.
gain (float): Gain factor. Defaults to 1.
base (int): Logarithm base. Defaults to 10.
Returns:
np.ndarray: Decibels spectrogram.
"""
assert (x < 0).sum() == 0, " [!] Input values must be non-negative."
return gain * _log(np.maximum(1e-8, x), base)
# pylint: disable=no-self-use
def db_to_amp(*, x: np.ndarray = None, gain: float = 1, base: int = 10, **kwargs) -> np.ndarray:
"""Convert decibels spectrogram to amplitude spectrogram.
Args:
x (np.ndarray): Decibels spectrogram.
gain (float): Gain factor. Defaults to 1.
base (int): Logarithm base. Defaults to 10.
Returns:
np.ndarray: Amplitude spectrogram.
"""
return _exp(x / gain, base)
def preemphasis(*, x: np.ndarray, coef: float = 0.97, **kwargs) -> np.ndarray:
"""Apply pre-emphasis to the audio signal. Useful to reduce the correlation between neighbouring signal values.
Args:
x (np.ndarray): Audio signal.
Raises:
RuntimeError: Preemphasis coeff is set to 0.
Returns:
np.ndarray: Decorrelated audio signal.
"""
if coef == 0:
raise RuntimeError(" [!] Preemphasis is set 0.0.")
return scipy.signal.lfilter([1, -coef], [1], x)
def deemphasis(*, x: np.ndarray = None, coef: float = 0.97, **kwargs) -> np.ndarray:
"""Reverse pre-emphasis."""
if coef == 0:
raise RuntimeError(" [!] Preemphasis is set 0.0.")
return scipy.signal.lfilter([1], [1, -coef], x)
def spec_to_mel(*, spec: np.ndarray, mel_basis: np.ndarray = None, **kwargs) -> np.ndarray:
"""Convert a full scale linear spectrogram output of a network to a melspectrogram.
Args:
spec (np.ndarray): Normalized full scale linear spectrogram.
Shapes:
- spec: :math:`[C, T]`
Returns:
np.ndarray: Normalized melspectrogram.
"""
return np.dot(mel_basis, spec)
def mel_to_spec(*, mel: np.ndarray = None, mel_basis: np.ndarray = None, **kwargs) -> np.ndarray:
"""Convert a melspectrogram to full scale spectrogram."""
assert (mel < 0).sum() == 0, " [!] Input values must be non-negative."
inv_mel_basis = np.linalg.pinv(mel_basis)
return np.maximum(1e-10, np.dot(inv_mel_basis, mel))
def wav_to_spec(*, wav: np.ndarray = None, **kwargs) -> np.ndarray:
"""Compute a spectrogram from a waveform.
Args:
wav (np.ndarray): Waveform. Shape :math:`[T_wav,]`
Returns:
np.ndarray: Spectrogram. Shape :math:`[C, T_spec]`. :math:`T_spec == T_wav / hop_length`
"""
D = stft(y=wav, **kwargs)
S = np.abs(D)
return S.astype(np.float32)
def wav_to_mel(*, wav: np.ndarray = None, mel_basis=None, **kwargs) -> np.ndarray:
"""Compute a melspectrogram from a waveform."""
D = stft(y=wav, **kwargs)
S = spec_to_mel(spec=np.abs(D), mel_basis=mel_basis, **kwargs)
return S.astype(np.float32)
def spec_to_wav(*, spec: np.ndarray, power: float = 1.5, **kwargs) -> np.ndarray:
"""Convert a spectrogram to a waveform using Griffi-Lim vocoder."""
S = spec.copy()
return griffin_lim(spec=S**power, **kwargs)
def mel_to_wav(*, mel: np.ndarray = None, power: float = 1.5, **kwargs) -> np.ndarray:
"""Convert a melspectrogram to a waveform using Griffi-Lim vocoder."""
S = mel.copy()
S = mel_to_spec(mel=S, mel_basis=kwargs["mel_basis"]) # Convert back to linear
return griffin_lim(spec=S**power, **kwargs)
### STFT and ISTFT ###
def stft(
*,
y: np.ndarray = None,
fft_size: int = None,
hop_length: int = None,
win_length: int = None,
pad_mode: str = "reflect",
window: str = "hann",
center: bool = True,
**kwargs,
) -> np.ndarray:
"""Librosa STFT wrapper.
Check http://librosa.org/doc/main/generated/librosa.stft.html argument details.
Returns:
np.ndarray: Complex number array.
"""
return librosa.stft(
y=y,
n_fft=fft_size,
hop_length=hop_length,
win_length=win_length,
pad_mode=pad_mode,
window=window,
center=center,
)
def istft(
*,
y: np.ndarray = None,
hop_length: int = None,
win_length: int = None,
window: str = "hann",
center: bool = True,
**kwargs,
) -> np.ndarray:
"""Librosa iSTFT wrapper.
Check http://librosa.org/doc/main/generated/librosa.istft.html argument details.
Returns:
np.ndarray: Complex number array.
"""
return librosa.istft(y, hop_length=hop_length, win_length=win_length, center=center, window=window)
def griffin_lim(*, spec: np.ndarray = None, num_iter=60, **kwargs) -> np.ndarray:
angles = np.exp(2j * np.pi * np.random.rand(*spec.shape))
S_complex = np.abs(spec).astype(complex)
y = istft(y=S_complex * angles, **kwargs)
if not np.isfinite(y).all():
print(" [!] Waveform is not finite everywhere. Skipping the GL.")
return np.array([0.0])
for _ in range(num_iter):
angles = np.exp(1j * np.angle(stft(y=y, **kwargs)))
y = istft(y=S_complex * angles, **kwargs)
return y
def compute_stft_paddings(
*, x: np.ndarray = None, hop_length: int = None, pad_two_sides: bool = False, **kwargs
) -> Tuple[int, int]:
"""Compute paddings used by Librosa's STFT. Compute right padding (final frame) or both sides padding
(first and final frames)"""
pad = (x.shape[0] // hop_length + 1) * hop_length - x.shape[0]
if not pad_two_sides:
return 0, pad
return pad // 2, pad // 2 + pad % 2
def compute_f0(
*,
x: np.ndarray = None,
pitch_fmax: float = None,
pitch_fmin: float = None,
hop_length: int = None,
win_length: int = None,
sample_rate: int = None,
stft_pad_mode: str = "reflect",
center: bool = True,
**kwargs,
) -> np.ndarray:
"""Compute pitch (f0) of a waveform using the same parameters used for computing melspectrogram.
Args:
x (np.ndarray): Waveform. Shape :math:`[T_wav,]`
pitch_fmax (float): Pitch max value.
pitch_fmin (float): Pitch min value.
hop_length (int): Number of frames between STFT columns.
win_length (int): STFT window length.
sample_rate (int): Audio sampling rate.
stft_pad_mode (str): Padding mode for STFT.
center (bool): Centered padding.
Returns:
np.ndarray: Pitch. Shape :math:`[T_pitch,]`. :math:`T_pitch == T_wav / hop_length`
Examples:
>>> WAV_FILE = filename = librosa.example('vibeace')
>>> from TTS.config import BaseAudioConfig
>>> from TTS.utils.audio import AudioProcessor
>>> conf = BaseAudioConfig(pitch_fmax=640, pitch_fmin=1)
>>> ap = AudioProcessor(**conf)
>>> wav = ap.load_wav(WAV_FILE, sr=ap.sample_rate)[:5 * ap.sample_rate]
>>> pitch = ap.compute_f0(wav)
"""
assert pitch_fmax is not None, " [!] Set `pitch_fmax` before caling `compute_f0`."
assert pitch_fmin is not None, " [!] Set `pitch_fmin` before caling `compute_f0`."
f0, voiced_mask, _ = pyin(
y=x.astype(np.double),
fmin=pitch_fmin,
fmax=pitch_fmax,
sr=sample_rate,
frame_length=win_length,
win_length=win_length // 2,
hop_length=hop_length,
pad_mode=stft_pad_mode,
center=center,
n_thresholds=100,
beta_parameters=(2, 18),
boltzmann_parameter=2,
resolution=0.1,
max_transition_rate=35.92,
switch_prob=0.01,
no_trough_prob=0.01,
)
f0[~voiced_mask] = 0.0
return f0
def compute_energy(y: np.ndarray, **kwargs) -> np.ndarray:
"""Compute energy of a waveform using the same parameters used for computing melspectrogram.
Args:
x (np.ndarray): Waveform. Shape :math:`[T_wav,]`
Returns:
np.ndarray: energy. Shape :math:`[T_energy,]`. :math:`T_energy == T_wav / hop_length`
Examples:
>>> WAV_FILE = filename = librosa.example('vibeace')
>>> from TTS.config import BaseAudioConfig
>>> from TTS.utils.audio import AudioProcessor
>>> conf = BaseAudioConfig()
>>> ap = AudioProcessor(**conf)
>>> wav = ap.load_wav(WAV_FILE, sr=ap.sample_rate)[:5 * ap.sample_rate]
>>> energy = ap.compute_energy(wav)
"""
x = stft(y=y, **kwargs)
mag, _ = magphase(x)
energy = np.sqrt(np.sum(mag**2, axis=0))
return energy
### Audio Processing ###
def find_endpoint(
*,
wav: np.ndarray = None,
trim_db: float = -40,
sample_rate: int = None,
min_silence_sec=0.8,
gain: float = None,
base: int = None,
**kwargs,
) -> int:
"""Find the last point without silence at the end of a audio signal.
Args:
wav (np.ndarray): Audio signal.
threshold_db (int, optional): Silence threshold in decibels. Defaults to -40.
min_silence_sec (float, optional): Ignore silences that are shorter then this in secs. Defaults to 0.8.
gian (float, optional): Gain to be used to convert trim_db to trim_amp. Defaults to None.
base (int, optional): Base of the logarithm used to convert trim_db to trim_amp. Defaults to 10.
Returns:
int: Last point without silence.
"""
window_length = int(sample_rate * min_silence_sec)
hop_length = int(window_length / 4)
threshold = db_to_amp(x=-trim_db, gain=gain, base=base)
for x in range(hop_length, len(wav) - window_length, hop_length):
if np.max(wav[x : x + window_length]) < threshold:
return x + hop_length
return len(wav)
def trim_silence(
*,
wav: np.ndarray = None,
sample_rate: int = None,
trim_db: float = None,
win_length: int = None,
hop_length: int = None,
**kwargs,
) -> np.ndarray:
"""Trim silent parts with a threshold and 0.01 sec margin"""
margin = int(sample_rate * 0.01)
wav = wav[margin:-margin]
return librosa.effects.trim(wav, top_db=trim_db, frame_length=win_length, hop_length=hop_length)[0]
def volume_norm(*, x: np.ndarray = None, coef: float = 0.95, **kwargs) -> np.ndarray:
"""Normalize the volume of an audio signal.
Args:
x (np.ndarray): Raw waveform.
coef (float): Coefficient to rescale the maximum value. Defaults to 0.95.
Returns:
np.ndarray: Volume normalized waveform.
"""
return x / abs(x).max() * coef
def rms_norm(*, wav: np.ndarray = None, db_level: float = -27.0, **kwargs) -> np.ndarray:
r = 10 ** (db_level / 20)
a = np.sqrt((len(wav) * (r**2)) / np.sum(wav**2))
return wav * a
def rms_volume_norm(*, x: np.ndarray, db_level: float = -27.0, **kwargs) -> np.ndarray:
"""Normalize the volume based on RMS of the signal.
Args:
x (np.ndarray): Raw waveform.
db_level (float): Target dB level in RMS. Defaults to -27.0.
Returns:
np.ndarray: RMS normalized waveform.
"""
assert -99 <= db_level <= 0, " [!] db_level should be between -99 and 0"
wav = rms_norm(wav=x, db_level=db_level)
return wav
def load_wav(*, filename: str, sample_rate: int = None, resample: bool = False, **kwargs) -> np.ndarray:
"""Read a wav file using Librosa and optionally resample, silence trim, volume normalize.
Resampling slows down loading the file significantly. Therefore it is recommended to resample the file before.
Args:
filename (str): Path to the wav file.
sr (int, optional): Sampling rate for resampling. Defaults to None.
resample (bool, optional): Resample the audio file when loading. Slows down the I/O time. Defaults to False.
Returns:
np.ndarray: Loaded waveform.
"""
if resample:
# loading with resampling. It is significantly slower.
x, _ = librosa.load(filename, sr=sample_rate)
else:
# SF is faster than librosa for loading files
x, _ = sf.read(filename)
return x
def save_wav(*, wav: np.ndarray, path: str, sample_rate: int = None, pipe_out=None, **kwargs) -> None:
"""Save float waveform to a file using Scipy.
Args:
wav (np.ndarray): Waveform with float values in range [-1, 1] to save.
path (str): Path to a output file.
sr (int, optional): Sampling rate used for saving to the file. Defaults to None.
pipe_out (BytesIO, optional): Flag to stdout the generated TTS wav file for shell pipe.
"""
wav_norm = wav * (32767 / max(0.01, np.max(np.abs(wav))))
wav_norm = wav_norm.astype(np.int16)
if pipe_out:
wav_buffer = BytesIO()
scipy.io.wavfile.write(wav_buffer, sample_rate, wav_norm)
wav_buffer.seek(0)
pipe_out.buffer.write(wav_buffer.read())
scipy.io.wavfile.write(path, sample_rate, wav_norm)
def mulaw_encode(*, wav: np.ndarray, mulaw_qc: int, **kwargs) -> np.ndarray:
mu = 2**mulaw_qc - 1
signal = np.sign(wav) * np.log(1 + mu * np.abs(wav)) / np.log(1.0 + mu)
signal = (signal + 1) / 2 * mu + 0.5
return np.floor(
signal,
)
def mulaw_decode(*, wav, mulaw_qc: int, **kwargs) -> np.ndarray:
"""Recovers waveform from quantized values."""
mu = 2**mulaw_qc - 1
x = np.sign(wav) / mu * ((1 + mu) ** np.abs(wav) - 1)
return x
def encode_16bits(*, x: np.ndarray, **kwargs) -> np.ndarray:
return np.clip(x * 2**15, -(2**15), 2**15 - 1).astype(np.int16)
def quantize(*, x: np.ndarray, quantize_bits: int, **kwargs) -> np.ndarray:
"""Quantize a waveform to a given number of bits.
Args:
x (np.ndarray): Waveform to quantize. Must be normalized into the range `[-1, 1]`.
quantize_bits (int): Number of quantization bits.
Returns:
np.ndarray: Quantized waveform.
"""
return (x + 1.0) * (2**quantize_bits - 1) / 2
def dequantize(*, x, quantize_bits, **kwargs) -> np.ndarray:
"""Dequantize a waveform from the given number of bits."""
return 2 * x / (2**quantize_bits - 1) - 1
|