from transformers import AutoTokenizer import gradio as gr import os # Retrieve the Hugging Face token from secrets huggingface_token = os.getenv("HUGGINGFACE_TOKEN") def tokenize(input_text): palmyra_x_003_tokens = len(palmyra_x_003_tokenizer(input_text, add_special_tokens=True)["input_ids"]) gpt2_tokens = len(gpt2_tokenizer(input_text, add_special_tokens=True)["input_ids"]) palmyra_x_004_tokens = len(palmyra_x_004_tokenizer(input_text, add_special_tokens=True)["input_ids"]) results = { "Palmyra-X-004": palmyra_x_004_tokens, "Palmyra-Fin & Med": palmyra_x_003_tokens, "Palmyra-X-003": gpt2_tokens } # Sort the results in descending order based on token length sorted_results = sorted(results.items(), key=lambda x: x[1], reverse=True) return "\n".join([f"{model}: {tokens}" for model, tokens in sorted_results]) if __name__ == "__main__": palmyra_x_003_tokenizer = AutoTokenizer.from_pretrained("wassemgtk/palmyra-x-003-tokenizer", token=huggingface_token) gpt2_tokenizer = AutoTokenizer.from_pretrained("gpt2") palmyra_x_004_tokenizer = AutoTokenizer.from_pretrained("wassemgtk/palmyra-x-004-tokenizer", token=huggingface_token) iface = gr.Interface(fn=tokenize, inputs=gr.Textbox(label="Input Text", lines=19), outputs="text") iface.launch()