GSVI_Test1 / GPT_SoVITS /TTS_infer_pack /text_segmentation_method.py
XTer
Automated commit from batch script
5bbd2a7
import re
from typing import Callable
from tools.i18n.i18n import I18nAuto
i18n = I18nAuto()
METHODS = dict()
def get_method(name:str)->Callable:
method = METHODS.get(name, None)
if method is None:
raise ValueError(f"Method {name} not found")
return method
def register_method(name):
def decorator(func):
METHODS[name] = func
return func
return decorator
splits = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…", }
def split_big_text(text, max_len=510):
# 定义全角和半角标点符号
punctuation = "".join(splits)
# 切割文本
segments = re.split('([' + punctuation + '])', text)
# 初始化结果列表和当前片段
result = []
current_segment = ''
for segment in segments:
# 如果当前片段加上新的片段长度超过max_len,就将当前片段加入结果列表,并重置当前片段
if len(current_segment + segment) > max_len:
result.append(current_segment)
current_segment = segment
else:
current_segment += segment
# 将最后一个片段加入结果列表
if current_segment:
result.append(current_segment)
return result
def split(todo_text):
todo_text = todo_text.replace("……", "。").replace("——", ",")
if todo_text[-1] not in splits:
todo_text += "。"
i_split_head = i_split_tail = 0
len_text = len(todo_text)
todo_texts = []
while 1:
if i_split_head >= len_text:
break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
if todo_text[i_split_head] in splits:
i_split_head += 1
todo_texts.append(todo_text[i_split_tail:i_split_head])
i_split_tail = i_split_head
else:
i_split_head += 1
return todo_texts
def cut_sentence_multilang(text, max_length=30):
# 初始化计数器
word_count = 0
in_word = False
for index, char in enumerate(text):
if char.isspace(): # 如果当前字符是空格
in_word = False
elif char.isascii() and not in_word: # 如果是ASCII字符(英文)并且不在单词内
word_count += 1 # 新的英文单词
in_word = True
elif not char.isascii(): # 如果字符非英文
word_count += 1 # 每个非英文字符单独计为一个字
if word_count > max_length:
return text[:index], text[index:]
return text, ""
# contributed by XTer
# 简单的按长度切分,不希望出现超长的句子
def split_long_sentence(text, max_length=510):
opts = []
sentences = text.split('\n')
for sentence in sentences:
prev_text , sentence = cut_sentence_multilang(sentence, max_length)
while sentence.strip() != "":
opts.append(prev_text)
prev_text , sentence = cut_sentence_multilang(sentence, max_length)
opts.append(prev_text)
return "\n".join(opts)
# 不切
@register_method("cut0")
def cut0(inp):
return inp
# 凑四句一切
@register_method("cut1")
def cut1(inp):
inp = inp.strip("\n")
inps = split(inp)
split_idx = list(range(0, len(inps), 4))
split_idx[-1] = None
if len(split_idx) > 1:
opts = []
for idx in range(len(split_idx) - 1):
opts.append("".join(inps[split_idx[idx]: split_idx[idx + 1]]))
else:
opts = [inp]
return "\n".join(opts)
# 凑50字一切
@register_method("cut2")
def cut2(inp, max_length=50):
inp = split_long_sentence(inp).strip("\n")
inps = split(inp)
if len(inps) < 2:
return inp
opts = []
summ = 0
tmp_str = ""
for i in range(len(inps)):
summ += len(inps[i])
tmp_str += inps[i]
if summ > max_length:
summ = 0
opts.append(tmp_str)
tmp_str = ""
if tmp_str != "":
opts.append(tmp_str)
# print(opts)
if len(opts) > 1 and len(opts[-1]) < 50: ##如果最后一个太短了,和前一个合一起
opts[-2] = opts[-2] + opts[-1]
opts = opts[:-1]
return "\n".join(opts)
# 按中文句号。切
@register_method("cut3")
def cut3(inp):
inp = split_long_sentence(inp).strip("\n")
return "\n".join(["%s" % item for item in inp.strip("。").split("。")])
# 按英文句号.切
@register_method("cut4")
def cut4(inp):
inp = inp.strip("\n")
return "\n".join(["%s" % item for item in inp.strip(".").split(".")])
# 按标点符号切
# contributed by https://github.com/AI-Hobbyist/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py
@register_method("cut5")
def cut5(inp):
# if not re.search(r'[^\w\s]', inp[-1]):
# inp += '。'
inp = inp.strip("\n")
punds = r'[,.;?!、,。?!;:…]'
items = re.split(f'({punds})', inp)
mergeitems = ["".join(group) for group in zip(items[::2], items[1::2])]
# 在句子不存在符号或句尾无符号的时候保证文本完整
if len(items)%2 == 1:
mergeitems.append(items[-1])
opt = "\n".join(mergeitems)
return opt
def count_words_multilang(text):
# 初始化计数器
word_count = 0
in_word = False
for char in text:
if char.isspace(): # 如果当前字符是空格
in_word = False
elif char.isascii() and not in_word: # 如果是ASCII字符(英文)并且不在单词内
word_count += 1 # 新的英文单词
in_word = True
elif not char.isascii(): # 如果字符非英文
word_count += 1 # 每个非英文字符单独计为一个字
return word_count
# contributed by https://github.com/X-T-E-R/GPT-SoVITS-Inference/blob/main/GPT_SoVITS/TTS_infer_pack/text_segmentation_method.py
@register_method("auto_cut")
def auto_cut(inp, max_length=30):
# if not re.search(r'[^\w\s]', inp[-1]):
# inp += '。'
inp = inp.strip("\n")
inp = inp.replace(". ", "。")
erase_punds = r'[“”"‘’\'()()【】[\]{}<>《》〈〉〔〕〖〗〘〙〚〛〛〞〟]'
inp = re.sub(erase_punds, '', inp)
split_punds = r'[?!。?!~:]'
if inp[-1] not in split_punds:
inp+="。"
items = re.split(f'({split_punds})', inp)
items = ["".join(group) for group in zip(items[::2], items[1::2])]
def process_commas(text, max_length):
# Define separators and the regular expression for splitting
separators = [',', ',', '、', '——', '…']
# 使用正则表达式的捕获组来保留分隔符,分隔符两边的括号就是所谓的捕获组
regex_pattern = '(' + '|'.join(map(re.escape, separators)) + ')'
# 使用re.split函数分割文本,由于使用了捕获组,分隔符也会作为分割结果的一部分返回
sentences = re.split(regex_pattern, text)
processed_text = ""
current_line = ""
final_sentences = []
for sentence in sentences:
if count_words_multilang(sentence)>max_length:
final_sentences+=split_long_sentence(sentence,max_length=max_length).split("\n")
else:
final_sentences.append(sentence)
for sentence in final_sentences:
# Add the length of the sentence plus one for the space or newline that will follow
if count_words_multilang(current_line + sentence) <= max_length:
# If adding the next sentence does not exceed max length, add it to the current line
current_line += sentence
else:
# If the current line is too long, start a new line
processed_text += current_line.strip() + '\n'
current_line = sentence + " " # Start the new line with the current sentence
# Add any remaining text in current_line to processed_text
processed_text += current_line.strip()
return processed_text
final_items = []
for item in items:
final_items+=process_commas(item,max_length=max_length).split("\n")
final_items = [item for item in final_items if item.strip() and not (len(item.strip()) == 1 and item.strip() in "?!,,。?!~:")]
return "\n".join(final_items)
if __name__ == '__main__':
str1 = """我 有i一个j k 1"""
print(count_words_multilang(str1))
print(cut_sentence_multilang(str1, 20))