Spaces:
Runtime error
Runtime error
File size: 2,657 Bytes
61f3f56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
from transformers import CLIPTokenizer
from transformers.utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"lb203/LanguageBind-Thermal": "https://huggingface.co/lb203/LanguageBind-Thermal/resolve/main/vocab.json",
},
"merges_file": {
"lb203/LanguageBind-Thermal": "https://huggingface.co/lb203/LanguageBind-Thermal/resolve/main/merges.txt",
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"lb203/LanguageBind-Thermal": 77,
}
PRETRAINED_INIT_CONFIGURATION = {
"lb203/LanguageBind-Thermal": {},
}
class LanguageBindThermalTokenizer(CLIPTokenizer):
"""
Construct a CLIP tokenizer. Based on byte-level Byte-Pair-Encoding.
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
Path to the vocabulary file.
merges_file (`str`):
Path to the merges file.
errors (`str`, *optional*, defaults to `"replace"`):
Paradigm to follow when decoding bytes to UTF-8. See
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
unk_token (`str`, *optional*, defaults to `<|endoftext|>`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
bos_token (`str`, *optional*, defaults to `<|startoftext|>`):
The beginning of sequence token.
eos_token (`str`, *optional*, defaults to `<|endoftext|>`):
The end of sequence token.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
merges_file,
errors="replace",
unk_token="<|endoftext|>",
bos_token="<|startoftext|>",
eos_token="<|endoftext|>",
pad_token="<|endoftext|>", # hack to enable padding
**kwargs,
):
super(LanguageBindThermalTokenizer, self).__init__(
vocab_file,
merges_file,
errors,
unk_token,
bos_token,
eos_token,
pad_token, # hack to enable padding
**kwargs,) |