Spaces:
Runtime error
Runtime error
import math | |
import os | |
import argparse | |
import json | |
import torch | |
import transformers | |
from tqdm import tqdm | |
from llava.conversation import conv_templates, SeparatorStyle | |
from llava.constants import DEFAULT_X_START_TOKEN, DEFAULT_X_TOKEN, DEFAULT_X_END_TOKEN, X_TOKEN_INDEX | |
from llava.mm_utils import get_model_name_from_path, tokenizer_X_token, KeywordsStoppingCriteria | |
from llava.model.builder import load_pretrained_model | |
from llava.model.language_model.llava_llama import LlavaLlamaForCausalLM | |
from llava.train.train import smart_tokenizer_and_embedding_resize | |
def split_list(lst, n): | |
"""Split a list into n (roughly) equal-sized chunks""" | |
chunk_size = math.ceil(len(lst) / n) # integer division | |
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)] | |
def get_chunk(lst, n, k): | |
chunks = split_list(lst, n) | |
return chunks[k] | |
def parse_args(): | |
""" | |
Parse command-line arguments. | |
""" | |
parser = argparse.ArgumentParser() | |
# Define the command-line arguments | |
parser.add_argument('--model_path', help='', required=True) | |
parser.add_argument('--cache_dir', help='', required=True) | |
parser.add_argument('--video_dir', help='Directory containing video files.', required=True) | |
parser.add_argument('--gt_file_question', help='Path to the ground truth file containing question.', required=True) | |
parser.add_argument('--gt_file_answers', help='Path to the ground truth file containing answers.', required=True) | |
parser.add_argument('--output_dir', help='Directory to save the model results JSON.', required=True) | |
parser.add_argument('--output_name', help='Name of the file for storing results JSON.', required=True) | |
parser.add_argument("--num_chunks", type=int, default=1) | |
parser.add_argument("--chunk_idx", type=int, default=0) | |
parser.add_argument("--device", type=str, required=False, default='cuda:0') | |
parser.add_argument('--model_base', help='', default=None, type=str, required=False) | |
parser.add_argument("--model_max_length", type=int, required=False, default=2048) | |
return parser.parse_args() | |
def get_model_output(model, video_processor, tokenizer, video, qs, args): | |
if model.config.mm_use_x_start_end: | |
qs = DEFAULT_X_START_TOKEN['VIDEO'] + DEFAULT_X_TOKEN['VIDEO'] + DEFAULT_X_END_TOKEN['VIDEO'] + '\n' + qs | |
else: | |
qs = DEFAULT_X_TOKEN['VIDEO'] + '\n' + qs | |
conv_mode = "llava_v1" | |
args.conv_mode = conv_mode | |
conv = conv_templates[args.conv_mode].copy() | |
conv.append_message(conv.roles[0], qs) | |
conv.append_message(conv.roles[1], None) | |
prompt = conv.get_prompt() | |
video_tensor = video_processor.preprocess(video, return_tensors='pt')['pixel_values'][0].half().to(args.device) | |
# print(video_tensor.shape) | |
input_ids = tokenizer_X_token(prompt, tokenizer, X_TOKEN_INDEX['VIDEO'], return_tensors='pt').unsqueeze(0).to(args.device) | |
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 | |
keywords = [stop_str] | |
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) | |
''' | |
images (X_modalities) [ | |
[img_feature, img_feature, video_feature, audio_feature], | |
['image', 'image', 'video', 'audio'] | |
] | |
''' | |
with torch.inference_mode(): | |
output_ids = model.generate( | |
input_ids, | |
images=[[video_tensor], ['video']], | |
do_sample=True, | |
temperature=0.2, | |
max_new_tokens=1024, | |
use_cache=True, | |
stopping_criteria=[stopping_criteria]) | |
input_token_len = input_ids.shape[1] | |
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item() | |
if n_diff_input_output > 0: | |
print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids') | |
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0] | |
outputs = outputs.strip() | |
if outputs.endswith(stop_str): | |
outputs = outputs[:-len(stop_str)] | |
outputs = outputs.strip() | |
print(outputs) | |
return outputs | |
def run_inference(args): | |
""" | |
Run inference on ActivityNet QA DataSet using the Video-ChatGPT model. | |
Args: | |
args: Command-line arguments. | |
""" | |
# Initialize the model | |
model_name = get_model_name_from_path(args.model_path) | |
tokenizer, model, processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name) | |
model = model.to(args.device) | |
# Load both ground truth file containing questions and answers | |
# with open(args.gt_file_question) as file: | |
# gt_questions = json.load(file) | |
# with open(args.gt_file_answers) as file: | |
# gt_answers = json.load(file) | |
gt_questions = json.load(open(args.gt_file_question, "r")) | |
gt_questions = get_chunk(gt_questions, args.num_chunks, args.chunk_idx) | |
gt_answers = json.load(open(args.gt_file_answers, "r")) | |
# gt_answers = get_chunk(gt_answers, args.num_chunks, args.chunk_idx) | |
answers_file = os.path.join(args.output_dir, f"{args.output_name}.json") | |
os.makedirs(args.output_dir, exist_ok=True) | |
ans_file = open(answers_file, "w") | |
# Create the output directory if it doesn't exist | |
if not os.path.exists(args.output_dir): | |
os.makedirs(args.output_dir) | |
output_list = [] # List to store the output results | |
video_formats = ['.mp4', '.avi', '.mov', '.mkv'] | |
# Iterate over each sample in the ground truth file | |
index = 0 | |
for sample in tqdm(gt_questions): | |
video_name = sample['video_name'] | |
question = sample['question'] | |
id = sample['question_id'] | |
answer = gt_answers[index]['answer'] | |
index += 1 | |
sample_set = {'id': id, 'question': question, 'answer': answer} | |
# Load the video file | |
for fmt in tqdm(video_formats): # Added this line | |
temp_path = os.path.join(args.video_dir, f"v_{video_name}{fmt}") | |
if os.path.exists(temp_path): | |
video_path = temp_path | |
# try: | |
# Run inference on the video and add the output to the list | |
output = get_model_output(model, processor['video'], tokenizer, video_path, question, args) | |
sample_set['pred'] = output | |
output_list.append(sample_set) | |
# except Exception as e: | |
# print(f"Error processing video file '{video_name}': {e}") | |
ans_file.write(json.dumps(sample_set) + "\n") | |
break | |
ans_file.close() | |
# Save the output list to a JSON file | |
# with open(os.path.join(args.output_dir, f"{args.output_name}.json"), 'w') as file: | |
# json.dump(output_list, file) | |
if __name__ == "__main__": | |
args = parse_args() | |
run_inference(args) | |