File size: 5,537 Bytes
6d228e9
 
 
 
be022a1
5dd1e25
 
6d228e9
 
5dd1e25
6d228e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0aab451
 
 
 
 
 
2f6212f
0aab451
2f6212f
0aab451
6d228e9
 
 
 
 
 
 
 
 
 
 
 
f6f5e88
 
6d228e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e19be2a
 
f6f5e88
e19be2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d228e9
 
 
 
5dd1e25
6d228e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import requests
import pandas as pd
from bs4 import BeautifulSoup
import numpy as np
import re
from selenium.webdriver.common.by import By


# wuzzuf function
def Wuzzuf_scrapping(job_type , job_num,driver):
    job1 = job_type.split(" ")[0]
    job2 = job_type.split(" ")[1]
    link1 = 'https://wuzzuf.net/search/jobs/?a=navbl&q='+job1+'%20'+job1
    title = []
    location = []
    country = []
    job_description = []
    Job_Requirements =[]
    company_name = []
    links = []
    Jop_type = []
    Career_Level = []
    company_logo = []
    Job_Categories = []
    Skills_And_Tools = []
    Experience_Needed =[]
    post_time = []
    Title = []
    pages_num = np.ceil(job_num/15)


    for i in range(int(pages_num) ):
      link_new = link1 +'&start='+str(i)
      try:
            data = requests.get(link_new)
            data.raise_for_status()  # Check for HTTP errors
            soup = BeautifulSoup(data.content, 'html.parser')
            Title = soup.find_all('h2', {'class': 'css-m604qf'})

      except requests.exceptions.RequestException as e:
           # print(f"Request failed: {e}")
          continue  # Skip to the next page if there's an error
   

  # to get the info about jobs

      for x in range(0,len(Title)):
        t = re.split('\(|\-',Title[x].find('a').text)
        title.append(t[0].strip())
        loc = re.split(',' , soup.find_all('span' , {'class': 'css-5wys0k'})[x].text)
        r = ""
        for i in range(len(loc[:-1])):
          r= r+ ', ' +loc[:-1][i].strip()
        location.append(r.replace(',', '', 1).strip())
        country.append(loc[-1].strip())
        #print("---",Title[x].find('a').attrs['href'])
        links.append(Title[x].find('a').attrs['href'])
        m = " ".join(re.findall("[a-zA-Z\d+]+", (soup.find_all('div' , {'class': 'css-d7j1kk'})[x].find('a').text)))
        company_name.append(m)
        c = soup.find_all('div' ,{'class':'css-1lh32fc'})[x].find_all('span')
        if len(c) ==1:
          Jop_type.append(c[0].text)
        else:
          n =[]
          for i in range(len(c)):
            n.append(c[i].text)
          Jop_type.append(n)
        n =soup.find_all('div' ,{'class':'css-y4udm8'})[x].find_all('div')[1].find_all(['a','span'])
        Career_Level.append(n[0].text)
        n =soup.find_all('div' ,{'class':'css-y4udm8'})[x].find_all('div')[1].find_all(['a','span'])

        yy = n[1].text.replace('·',' ').strip()
        yy = re.findall('[0-9-+]*',yy)
        y1 =""
        for i in range(len(yy)):
        
          if any(yy[i]):
            y1 = y1+yy[i]
        if y1 != "":
          Experience_Needed.append(y1)
        else:
          Experience_Needed.append("Not Specified")
        time = (soup.find_all('div' ,{'class':'css-d7j1kk'}))[x].find('div')
        post_time.append(time.text)
        
  # to get the logo of the company
        # Fetch the company logo
        try:
            #print(links[x])
            data1 = requests.get(links[x])
            data1.raise_for_status()  # Check for HTTP errors
            soup1 = BeautifulSoup(data1.content, 'html.parser')
            
            logo_meta = soup1.find_all('meta', {'property': "og:image"})
            if logo_meta:
                company_logo.append(logo_meta[0]['content'])
            else:
                print("No logo meta tag found.")
                company_logo.append("No logo found")
        
        except requests.exceptions.RequestException as e:
            print(f"Failed to fetch company logo: {e}")
            company_logo.append("Error fetching logo")
       # data1  = requests.get(links[x])
       # soup1 = BeautifulSoup(data1.content)
        #company_logo.append(soup1.find_all('meta',{'property':"og:image"})[0]['content'])
        #time.sleep(4)


  # get Job_Categories , Skills_And_Tools , job_description , and job_requirements from urls
        #driver = webdriver.Chrome('chromedriver',options=options)
        #driver.implicitly_wait(10)
        driver.get(links[x])
        Job_Categories.append(driver.find_element(By.XPATH ,'//*[@id="app"]/div/main/section[2]/div[5]').text.split("\n")[1:])
        Skills_And_Tools.append(driver.find_element(By.XPATH ,'//*[@id="app"]/div/main/section[2]/div[6]').text.split("\n")[1:])
        job_description.append(driver.find_element(By.XPATH ,'//*[@id="app"]/div/main/section[3]').text.split("\n")[1:])
        all =driver.find_elements(By.XPATH ,'//*[@id="app"]/div/main/section[4]/div')
        dict_other = {}
    
        new = all[0].text.split("\n\n")

        if len(new)!=1 :
          for i in range(len(new)):
            result =[]
            for k in (new[i].split('\n')[1:]):  
              result.append(k.replace("\u202f"," "))
              dict_other[new[i].split('\n')[0]] = result

            #result = re.sub('[\W_]+', '', ini_string)

          Job_Requirements.append(dict_other)

        else:
          nn = new[0].replace("\u202f"," ")
          Job_Requirements.append(nn.split('\n'))


  #  create data frame to combine all together

    df = pd.DataFrame({'Title' : title , 'Location' : location ,'country':country,'URLs':links ,'Company_Name' : company_name,'Career_Level':Career_Level,'post_time':post_time,'Experience_Needed':Experience_Needed,'Company_Logo':company_logo,"Job_Categories":Job_Categories , "Skills_And_Tools":Skills_And_Tools , "job_description":job_description,"Job_Requirements":Job_Requirements})
    
    df[:job_num].to_excel('WUZZUF_scrapping.xlsx',index=False,encoding='utf-8')
    return df[:job_num]