File size: 4,380 Bytes
e9b17c3
 
 
 
 
c1fc806
e9b17c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import pandas as pd
from selenium import webdriver
from selenium.webdriver.common.by import By
import time

def LINKEDIN_Scrapping(job_search , num_jobs,driver):
  job1 = job_search.split(" ")[0]
  job2 = job_search.split(" ")[1]

  link1 = 'https://www.linkedin.com/jobs/search?keywords='+job1 +'%20' +job2 +'&location=&geoId=&trk=public_jobs_jobs-search-bar_search-submit&position=1&pageNum=0'
  
  # FIRST get main informations about jobs

  title = []
  location = []
  country = []
  company_name = []
  post_time = []
  links =[]
  # get the specific numbers of jobs
  l1 = ""
  ll =""
  driver.get(link1)
  SCROLL_PAUSE_TIME = 0.5
  while True :
    l1 = driver.find_elements(By.XPATH,'//*[@id="main-content"]/section[2]/ul/li[*]/div')
    ll= driver.find_elements(By.XPATH ,'//*[@id="main-content"]/section[2]/ul/li[*]/div/a') 

    if len(l1) >= num_jobs:
      break
    time.sleep(3)
    # Get scroll height
    last_height = driver.execute_script("return document.body.scrollHeight")
    while True:
        
        # Scroll down to bottom
        driver.execute_script("window.scrollTo(0, document.body.scrollHeight);")

        # Wait to load page
        time.sleep(SCROLL_PAUSE_TIME)

        # Calculate new scroll height and compare with last scroll height
        new_height = driver.execute_script("return document.body.scrollHeight")
        if new_height == last_height:
            break
        last_height = new_height
        
    options.add_argument("window-size=1200x600")
    WebDriverWait(driver, 15).until(EC.element_to_be_clickable((By.XPATH, '//*[@id="main-content"]/section[2]/button'))).click()
    print(len(l1))
    time.sleep(2)
    


  l2 = l1[:num_jobs]

  for info in l2:   
    info_tot = info.text.split("\n")
    if len(info_tot)==5:
      title.append(info_tot[1])
      location.append(info_tot[3])
      company_name.append(info_tot[2])
      post_time.append(info_tot[4])
    else:
      title.append(info_tot[1])
      location.append(info_tot[3])
      company_name.append(info_tot[2])
      post_time.append(info_tot[5])

  # get links for jobs
  l3 = ll[:num_jobs]
  for i in l3:
    links.append(i.get_attribute('href'))
  
  df_ml = pd.DataFrame({'Title' : title , 'Location' : location ,'URLs':links ,'Company_Name' : company_name ,'post_time':post_time})




    # GET DESCRIPTION AND LOGO 
  def all_description_LOGO(urls):
    description =[]
    LOGO =[]
    for link in urls:         
      driver = webdriver.Chrome('chromedriver',options=options)
      driver.get(link)
      options.add_argument("window-size=1200x600")
      WebDriverWait(driver, 15).until(EC.element_to_be_clickable((By.XPATH, '//*[@id="main-content"]/section[1]/div/div[1]/section[1]/div/div/section/button[1]'))).click()
      qqq= 4+444*58/7+65
      K = driver.find_element(By.XPATH,'//*[@id="main-content"]/section[1]/div/section[2]/div/a/img')
      LOGO.append(K.get_attribute('src'))
      time.sleep(3)
      t = driver.find_element(By.XPATH ,'//*[@id="main-content"]/section[1]/div/div[1]/section[1]/div/div/section/div')
      t_reverse=t.text[::-1]

      if t_reverse[:9] =="erom wohs":
        l = len(t.text)
        strings=t.text[:l-9].split("\n")
        strings[:] = [x for x in strings if x]
        description.append(strings)
      else:
        strings=t.text.split("\n")
        strings[:] = [x for x in strings if x]
        description.append(strings)
    df_ml = pd.DataFrame({'all_about_job' : description ,'company_logo':LOGO})

    return df_ml

  # apply desc. and logo function
  E = all_description_LOGO(links)

  # other info function
  def other(urls):
    frames =[]
    for url in urls:
      data1 = requests.get(url)
      soup1 = BeautifulSoup(data1.content)
      j =  soup1.find('ul' , {'class': 'description__job-criteria-list'})
      time.sleep(4)
      jj=j.find_all('h3')
      dic ={}
      for i in range(len(jj)):
        dic[jj[i].text.replace('\n',' ').strip()] = j.find_all('span')[i].text.replace('\n',' ').strip()
      output = pd.DataFrame()
      output = output.append(dic, ignore_index=True) 
      frames.append(output)
    result = pd.concat(frames)
    return result

  # apply Other function
  df = other(links)
  df.fillna('Not_Found',inplace= True)
  df.reset_index(inplace=True, drop=True)
 
 # combine all together
  result = pd.concat([df_ml,E, df ], axis=1)

  return result