Spaces:
Sleeping
Sleeping
Create data_analysis.py
Browse files- data_analysis.py +208 -0
data_analysis.py
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#### function to show map for loaction of the job
|
2 |
+
import time
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import seaborn as sns
|
5 |
+
import matplotlib as mpl
|
6 |
+
import plotly
|
7 |
+
import plotly.express as px
|
8 |
+
import plotly.graph_objs as go
|
9 |
+
import plotly.offline as py
|
10 |
+
from plotly.offline import iplot
|
11 |
+
from plotly.subplots import make_subplots
|
12 |
+
import plotly.figure_factory as ff
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
def map_bubble(df):
|
17 |
+
|
18 |
+
import requests
|
19 |
+
import urllib.parse
|
20 |
+
g =[]
|
21 |
+
for i in range(len(df.Location)):
|
22 |
+
|
23 |
+
if df.Location.loc[i].split(","):
|
24 |
+
g.append(df.Location.loc[i].split(",")[0])
|
25 |
+
else:
|
26 |
+
g.append(df.Location.loc[i])
|
27 |
+
df['new_loc']=g
|
28 |
+
if 'country' in df.columns:
|
29 |
+
df["full_location"] = df["new_loc"] + ", " +df["country"]
|
30 |
+
dict_cities = dict(df.full_location.value_counts())
|
31 |
+
else :
|
32 |
+
dict_cities = dict(df.new_loc.value_counts())
|
33 |
+
lat = []
|
34 |
+
lon = []
|
35 |
+
bubble_df = pd.DataFrame()
|
36 |
+
add=[]
|
37 |
+
val=[]
|
38 |
+
try:
|
39 |
+
for address in dict_cities.keys():
|
40 |
+
url = 'https://nominatim.openstreetmap.org/search/' + urllib.parse.quote(address) +'?format=json'
|
41 |
+
|
42 |
+
response = requests.get(url).json()
|
43 |
+
lat.append(response[0]["lat"])
|
44 |
+
lon.append(response[0]["lon"])
|
45 |
+
add.append(address)
|
46 |
+
val.append(dict_cities[address])
|
47 |
+
except:
|
48 |
+
pass
|
49 |
+
|
50 |
+
bubble_df['address'] =add
|
51 |
+
bubble_df['lat'] = lat
|
52 |
+
bubble_df['lon'] = lon
|
53 |
+
bubble_df['value'] = val
|
54 |
+
|
55 |
+
|
56 |
+
# import the library
|
57 |
+
import folium
|
58 |
+
|
59 |
+
# Make an empty map
|
60 |
+
m = folium.Map(location=[20,0], tiles="OpenStreetMap", zoom_start=2)
|
61 |
+
# add marker one by one on the map
|
62 |
+
for i in range(0,len(bubble_df)):
|
63 |
+
folium.Circle(
|
64 |
+
location=[bubble_df.iloc[i]['lat'], bubble_df.iloc[i]['lon']],
|
65 |
+
|
66 |
+
popup=bubble_df.iloc[i][['address','value']].values,
|
67 |
+
radius=float(bubble_df.iloc[i]['value'])*500,
|
68 |
+
color='#69b3a2',
|
69 |
+
fill=True,
|
70 |
+
fill_color='#69b3a2'
|
71 |
+
).add_to(m)
|
72 |
+
m
|
73 |
+
# Show the map again
|
74 |
+
return m
|
75 |
+
|
76 |
+
|
77 |
+
##########################
|
78 |
+
|
79 |
+
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
#########################
|
84 |
+
#### wuzzuf analysis
|
85 |
+
def wuzzuf_exp(df1):
|
86 |
+
top10_job_title = df1['Title'].value_counts()[:10]
|
87 |
+
fig1 = px.bar(y=top10_job_title.values,
|
88 |
+
x=top10_job_title.index,
|
89 |
+
color = top10_job_title.index,
|
90 |
+
color_discrete_sequence=px.colors.sequential.deep,
|
91 |
+
text=top10_job_title.values,
|
92 |
+
title= 'Top 10 Job Titles',
|
93 |
+
template= 'plotly_dark')
|
94 |
+
fig1.update_layout(height=500,width=500,
|
95 |
+
xaxis_title="Job Titles",
|
96 |
+
yaxis_title="count",
|
97 |
+
font = dict(size=17,family="Franklin Gothic"))
|
98 |
+
st.plotly_chart(fig1)
|
99 |
+
|
100 |
+
type_grouped = df1['Career_Level'].value_counts()
|
101 |
+
#e_type = ['Full-Time','Part-Time','Contract','Freelance']
|
102 |
+
e_type =dict(df1['Career_Level'].value_counts()).keys()
|
103 |
+
fig2 = px.bar(x = e_type, y = type_grouped.values,
|
104 |
+
color = type_grouped.index,
|
105 |
+
color_discrete_sequence=px.colors.sequential.dense,
|
106 |
+
template = 'plotly_dark',
|
107 |
+
text = type_grouped.values, title = 'Career Level Distribution')
|
108 |
+
fig2.update_layout( height=500, width=500,
|
109 |
+
xaxis_title="Career Level",
|
110 |
+
yaxis_title="count",
|
111 |
+
font = dict(size=17,family="Franklin Gothic"))
|
112 |
+
fig2.update_traces(width=0.5)
|
113 |
+
st.plotly_chart(fig2)
|
114 |
+
residence = df1['Location'].value_counts()
|
115 |
+
top10_employee_location = residence[:10]
|
116 |
+
fig3 = px.bar(y=top10_employee_location.values,
|
117 |
+
x=top10_employee_location.index,
|
118 |
+
color = top10_employee_location.index,
|
119 |
+
color_discrete_sequence=px.colors.sequential.deep,
|
120 |
+
text=top10_employee_location.values,
|
121 |
+
title= 'Top 10 Location of job',
|
122 |
+
template= 'plotly_dark')
|
123 |
+
fig3.update_layout(height=500,width=500,
|
124 |
+
xaxis_title="Location of job",
|
125 |
+
yaxis_title="count",
|
126 |
+
font = dict(size=17,family="Franklin Gothic"))
|
127 |
+
st.plotly_chart(fig3)
|
128 |
+
|
129 |
+
type_grouped = df1['Experience_Needed'].value_counts()
|
130 |
+
#e_type = ['Full-Time','Part-Time','Contract','Freelance']
|
131 |
+
e_type =dict(df1['Experience_Needed'].value_counts()).keys()
|
132 |
+
fig4 = px.bar(x = e_type, y = type_grouped.values,
|
133 |
+
color = type_grouped.index,
|
134 |
+
color_discrete_sequence=px.colors.sequential.dense,
|
135 |
+
template = 'plotly_dark',
|
136 |
+
text = type_grouped.values, title = ' Experience Level Distribution')
|
137 |
+
fig4.update_layout(height=500,width=500,
|
138 |
+
xaxis_title=" Experience Level (years)",
|
139 |
+
yaxis_title="count",
|
140 |
+
font = dict(size=17,family="Franklin Gothic"))
|
141 |
+
fig4.update_traces(width=0.5)
|
142 |
+
st.plotly_chart(fig4)
|
143 |
+
return
|
144 |
+
|
145 |
+
|
146 |
+
|
147 |
+
#########################
|
148 |
+
### linkedin analysis
|
149 |
+
|
150 |
+
def linkedin_exp(df1):
|
151 |
+
top10_job_title = df1['Title'].value_counts()[:10]
|
152 |
+
fig1 = px.bar(y=top10_job_title.values,
|
153 |
+
x=top10_job_title.index,
|
154 |
+
color = top10_job_title.index,
|
155 |
+
color_discrete_sequence=px.colors.sequential.deep,
|
156 |
+
text=top10_job_title.values,
|
157 |
+
title= 'Top 10 Job Titles',
|
158 |
+
template= 'plotly_dark')
|
159 |
+
fig1.update_layout(height=500,width=500,
|
160 |
+
xaxis_title="Job Titles",
|
161 |
+
yaxis_title="count",
|
162 |
+
font = dict(size=17,family="Franklin Gothic"))
|
163 |
+
st.plotly_chart(fig1)
|
164 |
+
|
165 |
+
type_grouped = df1['Employment type'].value_counts()
|
166 |
+
#e_type = ['Full-Time','Part-Time','Contract','Freelance']
|
167 |
+
e_type =dict(df1['Employment type'].value_counts()).keys()
|
168 |
+
fig2 = px.bar(x = e_type, y = type_grouped.values,
|
169 |
+
color = type_grouped.index,
|
170 |
+
color_discrete_sequence=px.colors.sequential.dense,
|
171 |
+
template = 'plotly_dark',
|
172 |
+
text = type_grouped.values, title = 'Employment type Distribution')
|
173 |
+
fig2.update_layout( height=500, width=500,
|
174 |
+
xaxis_title="Employment type",
|
175 |
+
yaxis_title="count",
|
176 |
+
font = dict(size=17,family="Franklin Gothic"))
|
177 |
+
fig2.update_traces(width=0.5)
|
178 |
+
st.plotly_chart(fig2)
|
179 |
+
residence = df1['Location'].value_counts()
|
180 |
+
top10_employee_location = residence[:10]
|
181 |
+
fig3 = px.bar(y=top10_employee_location.values,
|
182 |
+
x=top10_employee_location.index,
|
183 |
+
color = top10_employee_location.index,
|
184 |
+
color_discrete_sequence=px.colors.sequential.deep,
|
185 |
+
text=top10_employee_location.values,
|
186 |
+
title= 'Top 10 Location of job',
|
187 |
+
template= 'plotly_dark')
|
188 |
+
fig3.update_layout(height=500,width=500,
|
189 |
+
xaxis_title="Location of job",
|
190 |
+
yaxis_title="count",
|
191 |
+
font = dict(size=17,family="Franklin Gothic"))
|
192 |
+
st.plotly_chart(fig3)
|
193 |
+
|
194 |
+
type_grouped = df1['Seniority level'].value_counts()
|
195 |
+
#e_type = ['Full-Time','Part-Time','Contract','Freelance']
|
196 |
+
e_type =dict(df1['Seniority level'].value_counts()).keys()
|
197 |
+
fig4 = px.bar(x = e_type, y = type_grouped.values,
|
198 |
+
color = type_grouped.index,
|
199 |
+
color_discrete_sequence=px.colors.sequential.dense,
|
200 |
+
template = 'plotly_dark',
|
201 |
+
text = type_grouped.values, title = 'Seniority level Distribution')
|
202 |
+
fig4.update_layout(height=500,width=500,
|
203 |
+
xaxis_title="Seniority level",
|
204 |
+
yaxis_title="count",
|
205 |
+
font = dict(size=17,family="Franklin Gothic"))
|
206 |
+
fig4.update_traces(width=0.5)
|
207 |
+
st.plotly_chart(fig4)
|
208 |
+
return
|