File size: 14,760 Bytes
9da7c8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
import os
import random

import autocuda
from pyabsa.utils.pyabsa_utils import fprint

from diffusers import AutoencoderKL, UNet2DConditionModel, StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, \
    DPMSolverMultistepScheduler
import gradio as gr
import torch
from PIL import Image
import utils
import datetime
import time
import psutil
from Waifu2x.magnify import ImageMagnifier

magnifier = ImageMagnifier()

start_time = time.time()
is_colab = utils.is_google_colab()

CUDA_VISIBLE_DEVICES = ''
device = autocuda.auto_cuda()

dtype = torch.float16 if device != 'cpu' else torch.float32


class Model:
    def __init__(self, name, path="", prefix=""):
        self.name = name
        self.path = path
        self.prefix = prefix
        self.pipe_t2i = None
        self.pipe_i2i = None


models = [
    Model("anything v3", "Linaqruf/anything-v3.0", "anything v3 style"),
]
#  Model("Spider-Verse", "nitrosocke/spider-verse-diffusion", "spiderverse style "),
#  Model("Balloon Art", "Fictiverse/Stable_Diffusion_BalloonArt_Model", "BalloonArt "),
#  Model("Elden Ring", "nitrosocke/elden-ring-diffusion", "elden ring style "),
#  Model("Tron Legacy", "dallinmackay/Tron-Legacy-diffusion", "trnlgcy ")
# Model("Pokémon", "lambdalabs/sd-pokemon-diffusers", ""),
# Model("Pony Diffusion", "AstraliteHeart/pony-diffusion", ""),
# Model("Robo Diffusion", "nousr/robo-diffusion", ""),

scheduler = DPMSolverMultistepScheduler(
    beta_start=0.00085,
    beta_end=0.012,
    beta_schedule="scaled_linear",
    num_train_timesteps=1000,
    trained_betas=None,
    predict_epsilon=True,
    thresholding=False,
    algorithm_type="dpmsolver++",
    solver_type="midpoint",
    lower_order_final=True,
)

custom_model = None
if is_colab:
    models.insert(0, Model("Custom model"))
    custom_model = models[0]

last_mode = "txt2img"
current_model = models[1] if is_colab else models[0]
current_model_path = current_model.path

if is_colab:
    pipe = StableDiffusionPipeline.from_pretrained(current_model.path, torch_dtype=dtype, scheduler=scheduler,
                                                   safety_checker=lambda images, clip_input: (images, False))

else:  # download all models
    print(f"{datetime.datetime.now()} Downloading vae...")
    vae = AutoencoderKL.from_pretrained(current_model.path, subfolder="vae", torch_dtype=dtype)
    for model in models:
        try:
            print(f"{datetime.datetime.now()} Downloading {model.name} model...")
            unet = UNet2DConditionModel.from_pretrained(model.path, subfolder="unet", torch_dtype=dtype)
            model.pipe_t2i = StableDiffusionPipeline.from_pretrained(model.path, unet=unet, vae=vae,
                                                                     torch_dtype=dtype, scheduler=scheduler,
                                                                     safety_checker=None)
            model.pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(model.path, unet=unet, vae=vae,
                                                                            torch_dtype=dtype,
                                                                            scheduler=scheduler, safety_checker=None)
        except Exception as e:
            print(f"{datetime.datetime.now()} Failed to load model " + model.name + ": " + str(e))
            models.remove(model)
    pipe = models[0].pipe_t2i

# model.pipe_i2i = torch.compile(model.pipe_i2i)
# model.pipe_t2i = torch.compile(model.pipe_t2i)
if torch.cuda.is_available():
    pipe = pipe.to(device)


# device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"


def error_str(error, title="Error"):
    return f"""#### {title}
            {error}""" if error else ""


def custom_model_changed(path):
    models[0].path = path
    global current_model
    current_model = models[0]


def on_model_change(model_name):
    prefix = "Enter prompt. \"" + next((m.prefix for m in models if m.name == model_name),
                                       None) + "\" is prefixed automatically" if model_name != models[
        0].name else "Don't forget to use the custom model prefix in the prompt!"

    return gr.update(visible=model_name == models[0].name), gr.update(placeholder=prefix)


def inference(model_name, prompt, guidance, steps, width=512, height=512, seed=0, img=None, strength=0.5,
              neg_prompt="", scale_factor=2):
    fprint(psutil.virtual_memory())  # print memory usage
    prompt = 'detailed fingers, beautiful hands,' + prompt
    fprint(f"Prompt: {prompt}")
    global current_model
    for model in models:
        if model.name == model_name:
            current_model = model
            model_path = current_model.path

    generator = torch.Generator(device).manual_seed(seed) if seed != 0 else None

    try:
        if img is not None:
            return img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height,
                              generator, scale_factor), None
        else:
            return txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator,
                              scale_factor), None
    except Exception as e:
        return None, error_str(e)
    # if img is not None:
    #     return img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height,
    #                       generator, scale_factor), None
    # else:
    #     return txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator, scale_factor), None


def txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator, scale_factor):
    print(f"{datetime.datetime.now()} txt_to_img, model: {current_model.name}")

    global last_mode
    global pipe
    global current_model_path
    if model_path != current_model_path or last_mode != "txt2img":
        current_model_path = model_path

        if is_colab or current_model == custom_model:
            pipe = StableDiffusionPipeline.from_pretrained(current_model_path, torch_dtype=dtype,
                                                           scheduler=scheduler,
                                                           safety_checker=lambda images, clip_input: (images, False))
        else:
            # pipe = pipe.to("cpu")
            pipe = current_model.pipe_t2i

        if torch.cuda.is_available():
            pipe = pipe.to(device)
        last_mode = "txt2img"

    prompt = current_model.prefix + prompt
    result = pipe(
        prompt,
        negative_prompt=neg_prompt,
        # num_images_per_prompt=n_images,
        num_inference_steps=int(steps),
        guidance_scale=guidance,
        width=width,
        height=height,
        generator=generator)
    result.images[0] = magnifier.magnify(result.images[0], scale_factor=scale_factor)

    # save image
    result.images[0].save("imgs/result-{}.png".format(datetime.datetime.now().strftime("%Y%m%d-%H%M%S")))
    return replace_nsfw_images(result)


def img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator, scale_factor):
    fprint(f"{datetime.datetime.now()} img_to_img, model: {model_path}")

    global last_mode
    global pipe
    global current_model_path
    if model_path != current_model_path or last_mode != "img2img":
        current_model_path = model_path

        if is_colab or current_model == custom_model:
            pipe = StableDiffusionImg2ImgPipeline.from_pretrained(current_model_path, torch_dtype=dtype,
                                                                  scheduler=scheduler,
                                                                  safety_checker=lambda images, clip_input: (
                                                                      images, False))
        else:
            # pipe = pipe.to("cpu")
            pipe = current_model.pipe_i2i

        if torch.cuda.is_available():
            pipe = pipe.to(device)
        last_mode = "img2img"

    prompt = current_model.prefix + prompt
    ratio = min(height / img.height, width / img.width)
    img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
    result = pipe(
        prompt,
        negative_prompt=neg_prompt,
        # num_images_per_prompt=n_images,
        image=img,
        num_inference_steps=int(steps),
        strength=strength,
        guidance_scale=guidance,
        # width=width,
        # height=height,
        generator=generator)
    result.images[0] = magnifier.magnify(result.images[0], scale_factor=scale_factor)

    # save image
    result.images[0].save("imgs/result-{}.png".format(datetime.datetime.now().strftime("%Y%m%d-%H%M%S")))
    return replace_nsfw_images(result)


def replace_nsfw_images(results):
    if is_colab:
        return results.images[0]
    if hasattr(results, "nsfw_content_detected") and results.nsfw_content_detected:
        for i in range(len(results.images)):
            if results.nsfw_content_detected[i]:
                results.images[i] = Image.open("nsfw.png")
    return results.images[0]


css = """.finetuned-diffusion-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.finetuned-diffusion-div div h1{font-weight:900;margin-bottom:7px}.finetuned-diffusion-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
"""
with gr.Blocks(css=css) as demo:
    if not os.path.exists('imgs'):
        os.mkdir('imgs')

    gr.Markdown('# Super Resolution Anime Diffusion')
    gr.Markdown(
        "## Author: [yangheng95](https://github.com/yangheng95)  Github:[Github](https://github.com/yangheng95/SuperResolutionAnimeDiffusion)")
    gr.Markdown("### This demo is running on a CPU, so it will take at least 20 minutes. "
                "If you have a GPU, you can clone from [Github](https://github.com/yangheng95/SuperResolutionAnimeDiffusion) and run it locally.")
    gr.Markdown("### FYI: to generate a 512*512 image and magnify 4x, it only takes 5~8 seconds on a RTX 2080 GPU")
    gr.Markdown(
        "### You can duplicate this demo on HuggingFace Spaces, click [here](https://huggingface.co/spaces/yangheng/Super-Resolution-Anime-Diffusion?duplicate=true)")

    with gr.Row():
        with gr.Column(scale=55):
            with gr.Group():
                gr.Markdown("Text to image")

                model_name = gr.Dropdown(label="Model", choices=[m.name for m in models], value=current_model.name)

                with gr.Box(visible=False) as custom_model_group:
                    custom_model_path = gr.Textbox(label="Custom model path",
                                                   placeholder="Path to model, e.g. nitrosocke/Arcane-Diffusion",
                                                   interactive=True)
                    gr.HTML(
                        "<div><font size='2'>Custom models have to be downloaded first, so give it some time.</font></div>")

                with gr.Row():
                    prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,
                                        placeholder="Enter prompt. Style applied automatically").style(container=False)
                with gr.Row():
                    generate = gr.Button(value="Generate")

                with gr.Row():
                    with gr.Group():
                        neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")

                image_out = gr.Image(height=512)
                # gallery = gr.Gallery(
                #     label="Generated images", show_label=False, elem_id="gallery"
                # ).style(grid=[1], height="auto")
            error_output = gr.Markdown()

        with gr.Column(scale=45):
            with gr.Group():
                gr.Markdown("Image to Image")

                with gr.Row():
                    with gr.Group():
                        image = gr.Image(label="Image", height=256, tool="editor", type="pil")
                        strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01,
                                             value=0.5)

                with gr.Row():
                    with gr.Group():
                        # n_images = gr.Slider(label="Images", value=1, minimum=1, maximum=4, step=1)

                        with gr.Row():
                            guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
                            steps = gr.Slider(label="Steps", value=15, minimum=2, maximum=75, step=1)

                        with gr.Row():
                            width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8)
                            height = gr.Slider(label="Height", value=512, minimum=64, maximum=1024, step=8)
                        with gr.Row():
                            scale_factor = gr.Slider(1, 8, label='Scale factor (to magnify image) (1, 2, 4, 8)',
                                                     value=2,
                                                     step=1)

                        seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)

    if is_colab:
        model_name.change(on_model_change, inputs=model_name, outputs=[custom_model_group, prompt], queue=False)
        custom_model_path.change(custom_model_changed, inputs=custom_model_path, outputs=None)
    # n_images.change(lambda n: gr.Gallery().style(grid=[2 if n > 1 else 1], height="auto"), inputs=n_images, outputs=gallery)

    gr.Markdown("### based on [Anything V3](https://huggingface.co/Linaqruf/anything-v3.0)")

    inputs = [model_name, prompt, guidance, steps, width, height, seed, image, strength, neg_prompt, scale_factor]
    outputs = [image_out, error_output]
    prompt.submit(inference, inputs=inputs, outputs=outputs)
    generate.click(inference, inputs=inputs, outputs=outputs, api_name="generate")

    prompt_keys = [
        'girl', 'lovely', 'cute', 'beautiful eyes', 'cumulonimbus clouds', 'detailed fingers',
        random.choice(['dress']),
        random.choice(['white hair']),
        random.choice(['blue eyes']),
        random.choice(['flower meadow']),
        random.choice(['Elif', 'Angel'])
    ]
    prompt.value = ','.join(prompt_keys)
    ex = gr.Examples([
        [models[0].name, prompt.value, 7.5, 15],

    ], inputs=[model_name, prompt, guidance, steps, seed], outputs=outputs, fn=inference, cache_examples=False)

print(f"Space built in {time.time() - start_time:.2f} seconds")

if not is_colab:
    demo.queue(concurrency_count=2)
demo.launch(debug=is_colab, enable_queue=True, share=is_colab)