Spaces:
Sleeping
Sleeping
import subprocess | |
import os | |
# Ensure the required libraries are installed | |
def install(package): | |
subprocess.check_call([os.sys.executable, "-m", "pip", "install", package]) | |
# Install transformers, huggingface_hub | |
install("transformers") | |
install("huggingface_hub") | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from huggingface_hub import login | |
import torch | |
import gradio as gr | |
import spaces | |
token = os.environ.get("HF_TOKEN_READ") | |
login(token) | |
model_id = "meta-llama/Llama-3.2-1B-Instruct" | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
torch_dtype=torch.bfloat16, | |
token=token | |
) | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
if torch.cuda.is_available(): | |
device = torch.device("cuda") | |
print(f"Usando GPU: {torch.cuda.get_device_name(device)}") | |
else: | |
device = torch.device("cpu") | |
print("Usando CPU") | |
model = model.to(device) | |
def respond( | |
message, | |
history, | |
system_message, | |
max_tokens, | |
temperature, | |
top_p | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
input_ids = tokenizer.apply_chat_template( | |
messages, | |
add_generation_prompt=True, | |
return_tensors='pt' | |
).to(model.device) | |
terminators = [ | |
tokenizer.eos_token_id, | |
tokenizer.convert_tokens_to_ids("<|eot_id|>") | |
] | |
outputs = model.generate( | |
input_ids, | |
max_new_tokens=max_tokens, | |
eos_token_id=terminators, | |
do_sample=True, | |
temperature=temperature, | |
top_p=top_p | |
) | |
response = "" | |
for message in tokenizer.decode( | |
outputs[0][input_ids.shape[-1]:], | |
skip_special_tokens=True | |
): | |
response += message | |
yield response | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="Tu eres un asistente amigable", label="System Message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=3, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1, value=0.95, step=0.05, label="Top p") | |
] | |
) | |
if __name__ == "__main__": | |
demo.launch() |