E2-F5-TTSi / test_infer_single.py
mrfakename's picture
Super-squash branch 'main' using huggingface_hub
1646c30 verified
raw
history blame
5.19 kB
import os
import re
import torch
import torchaudio
from einops import rearrange
from ema_pytorch import EMA
from vocos import Vocos
from model import CFM, UNetT, DiT, MMDiT
from model.utils import (
get_tokenizer,
convert_char_to_pinyin,
save_spectrogram,
)
device = "cuda" if torch.cuda.is_available() else "cpu"
# --------------------- Dataset Settings -------------------- #
target_sample_rate = 24000
n_mel_channels = 100
hop_length = 256
target_rms = 0.1
tokenizer = "pinyin"
dataset_name = "Emilia_ZH_EN"
# ---------------------- infer setting ---------------------- #
seed = None # int | None
exp_name = "F5TTS_Base" # F5TTS_Base | E2TTS_Base
ckpt_step = 1200000
nfe_step = 32 # 16, 32
cfg_strength = 2.
ode_method = 'euler' # euler | midpoint
sway_sampling_coef = -1.
speed = 1.
fix_duration = 27 # None (will linear estimate. if code-switched, consider fix) | float (total in seconds, include ref audio)
if exp_name == "F5TTS_Base":
model_cls = DiT
model_cfg = dict(dim = 1024, depth = 22, heads = 16, ff_mult = 2, text_dim = 512, conv_layers = 4)
elif exp_name == "E2TTS_Base":
model_cls = UNetT
model_cfg = dict(dim = 1024, depth = 24, heads = 16, ff_mult = 4)
checkpoint = torch.load(f"ckpts/{exp_name}/model_{ckpt_step}.pt", map_location=device)
output_dir = "tests"
ref_audio = "tests/ref_audio/test_en_1_ref_short.wav"
ref_text = "Some call me nature, others call me mother nature."
gen_text = "I don't really care what you call me. I've been a silent spectator, watching species evolve, empires rise and fall. But always remember, I am mighty and enduring. Respect me and I'll nurture you; ignore me and you shall face the consequences."
# ref_audio = "tests/ref_audio/test_zh_1_ref_short.wav"
# ref_text = "对,这就是我,万人敬仰的太乙真人。"
# gen_text = "突然,身边一阵笑声。我看着他们,意气风发地挺直了胸膛,甩了甩那稍显肉感的双臂,轻笑道:\"我身上的肉,是为了掩饰我爆棚的魅力,否则,岂不吓坏了你们呢?\""
# -------------------------------------------------#
use_ema = True
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Vocoder model
local = False
if local:
vocos_local_path = "../checkpoints/charactr/vocos-mel-24khz"
vocos = Vocos.from_hparams(f"{vocos_local_path}/config.yaml")
state_dict = torch.load(f"{vocos_local_path}/pytorch_model.bin", map_location=device)
vocos.load_state_dict(state_dict)
vocos.eval()
else:
vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
# Tokenizer
vocab_char_map, vocab_size = get_tokenizer(dataset_name, tokenizer)
# Model
model = CFM(
transformer = model_cls(
**model_cfg,
text_num_embeds = vocab_size,
mel_dim = n_mel_channels
),
mel_spec_kwargs = dict(
target_sample_rate = target_sample_rate,
n_mel_channels = n_mel_channels,
hop_length = hop_length,
),
odeint_kwargs = dict(
method = ode_method,
),
vocab_char_map = vocab_char_map,
).to(device)
if use_ema == True:
ema_model = EMA(model, include_online_model = False).to(device)
ema_model.load_state_dict(checkpoint['ema_model_state_dict'])
ema_model.copy_params_from_ema_to_model()
else:
model.load_state_dict(checkpoint['model_state_dict'])
# Audio
audio, sr = torchaudio.load(ref_audio)
rms = torch.sqrt(torch.mean(torch.square(audio)))
if rms < target_rms:
audio = audio * target_rms / rms
if sr != target_sample_rate:
resampler = torchaudio.transforms.Resample(sr, target_sample_rate)
audio = resampler(audio)
audio = audio.to(device)
# Text
text_list = [ref_text + gen_text]
if tokenizer == "pinyin":
final_text_list = convert_char_to_pinyin(text_list)
else:
final_text_list = [text_list]
print(f"text : {text_list}")
print(f"pinyin: {final_text_list}")
# Duration
ref_audio_len = audio.shape[-1] // hop_length
if fix_duration is not None:
duration = int(fix_duration * target_sample_rate / hop_length)
else: # simple linear scale calcul
zh_pause_punc = r"。,、;:?!"
ref_text_len = len(ref_text) + len(re.findall(zh_pause_punc, ref_text))
gen_text_len = len(gen_text) + len(re.findall(zh_pause_punc, gen_text))
duration = ref_audio_len + int(ref_audio_len / ref_text_len * gen_text_len / speed)
# Inference
with torch.inference_mode():
generated, trajectory = model.sample(
cond = audio,
text = final_text_list,
duration = duration,
steps = nfe_step,
cfg_strength = cfg_strength,
sway_sampling_coef = sway_sampling_coef,
seed = seed,
)
print(f"Generated mel: {generated.shape}")
# Final result
generated = generated[:, ref_audio_len:, :]
generated_mel_spec = rearrange(generated, '1 n d -> 1 d n')
generated_wave = vocos.decode(generated_mel_spec.cpu())
if rms < target_rms:
generated_wave = generated_wave * rms / target_rms
save_spectrogram(generated_mel_spec[0].cpu().numpy(), f"{output_dir}/test_single.png")
torchaudio.save(f"{output_dir}/test_single.wav", generated_wave, target_sample_rate)
print(f"Generated wav: {generated_wave.shape}")