E2-F5-TTSi / cog.py
mrfakename's picture
Update cog.py
be4e512 verified
# Prediction interface for Cog ⚙️
# https://cog.run/python
from cog import BasePredictor, Input, Path
import os
import re
import torch
import torchaudio
import numpy as np
import tempfile
from einops import rearrange
from ema_pytorch import EMA
from vocos import Vocos
from pydub import AudioSegment
from model import CFM, UNetT, DiT, MMDiT
from cached_path import cached_path
from model.utils import (
get_tokenizer,
convert_char_to_pinyin,
save_spectrogram,
)
from transformers import pipeline
import librosa
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
target_sample_rate = 24000
n_mel_channels = 100
hop_length = 256
target_rms = 0.1
nfe_step = 32 # 16, 32
cfg_strength = 2.0
ode_method = 'euler'
sway_sampling_coef = -1.0
speed = 1.0
# fix_duration = 27 # None or float (duration in seconds)
fix_duration = None
class Predictor(BasePredictor):
def load_model(exp_name, model_cls, model_cfg, ckpt_step):
checkpoint = torch.load(str(cached_path(f"hf://SWivid/F5-TTS/{exp_name}/model_{ckpt_step}.pt")), map_location=device)
vocab_char_map, vocab_size = get_tokenizer("Emilia_ZH_EN", "pinyin")
model = CFM(
transformer=model_cls(
**model_cfg,
text_num_embeds=vocab_size,
mel_dim=n_mel_channels
),
mel_spec_kwargs=dict(
target_sample_rate=target_sample_rate,
n_mel_channels=n_mel_channels,
hop_length=hop_length,
),
odeint_kwargs=dict(
method=ode_method,
),
vocab_char_map=vocab_char_map,
).to(device)
ema_model = EMA(model, include_online_model=False).to(device)
ema_model.load_state_dict(checkpoint['ema_model_state_dict'])
ema_model.copy_params_from_ema_to_model()
return ema_model, model
def setup(self) -> None:
"""Load the model into memory to make running multiple predictions efficient"""
# self.model = torch.load("./weights.pth")
print("Loading Whisper model...")
self.pipe = pipeline(
"automatic-speech-recognition",
model="openai/whisper-large-v3-turbo",
torch_dtype=torch.float16,
device=device,
)
print("Loading F5-TTS model...")
F5TTS_model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
self.F5TTS_ema_model, self.F5TTS_base_model = self.load_model("F5TTS_Base", DiT, F5TTS_model_cfg, 1200000)
def predict(
self,
gen_text: str = Input(description="Text to generate"),
ref_audio_orig: Path = Input(description="Reference audio"),
remove_silence: bool = Input(description="Remove silences", default=True),
) -> Path:
"""Run a single prediction on the model"""
model_choice = "F5-TTS"
print(gen_text)
if len(gen_text) > 200:
raise gr.Error("Please keep your text under 200 chars.")
gr.Info("Converting audio...")
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
aseg = AudioSegment.from_file(ref_audio_orig)
audio_duration = len(aseg)
if audio_duration > 15000:
gr.Warning("Audio is over 15s, clipping to only first 15s.")
aseg = aseg[:15000]
aseg.export(f.name, format="wav")
ref_audio = f.name
ema_model = self.F5TTS_ema_model
base_model = self.F5TTS_base_model
if not ref_text.strip():
gr.Info("No reference text provided, transcribing reference audio...")
ref_text = outputs = self.pipe(
ref_audio,
chunk_length_s=30,
batch_size=128,
generate_kwargs={"task": "transcribe"},
return_timestamps=False,
)['text'].strip()
gr.Info("Finished transcription")
else:
gr.Info("Using custom reference text...")
audio, sr = torchaudio.load(ref_audio)
rms = torch.sqrt(torch.mean(torch.square(audio)))
if rms < target_rms:
audio = audio * target_rms / rms
if sr != target_sample_rate:
resampler = torchaudio.transforms.Resample(sr, target_sample_rate)
audio = resampler(audio)
audio = audio.to(device)
# Prepare the text
text_list = [ref_text + gen_text]
final_text_list = convert_char_to_pinyin(text_list)
# Calculate duration
ref_audio_len = audio.shape[-1] // hop_length
# if fix_duration is not None:
# duration = int(fix_duration * target_sample_rate / hop_length)
# else:
zh_pause_punc = r"。,、;:?!"
ref_text_len = len(ref_text) + len(re.findall(zh_pause_punc, ref_text))
gen_text_len = len(gen_text) + len(re.findall(zh_pause_punc, gen_text))
duration = ref_audio_len + int(ref_audio_len / ref_text_len * gen_text_len / speed)
# inference
gr.Info(f"Generating audio using F5-TTS")
with torch.inference_mode():
generated, _ = base_model.sample(
cond=audio,
text=final_text_list,
duration=duration,
steps=nfe_step,
cfg_strength=cfg_strength,
sway_sampling_coef=sway_sampling_coef,
)
generated = generated[:, ref_audio_len:, :]
generated_mel_spec = rearrange(generated, '1 n d -> 1 d n')
gr.Info("Running vocoder")
vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
generated_wave = vocos.decode(generated_mel_spec.cpu())
if rms < target_rms:
generated_wave = generated_wave * rms / target_rms
# wav -> numpy
generated_wave = generated_wave.squeeze().cpu().numpy()
if remove_silence:
gr.Info("Removing audio silences... This may take a moment")
non_silent_intervals = librosa.effects.split(generated_wave, top_db=30)
non_silent_wave = np.array([])
for interval in non_silent_intervals:
start, end = interval
non_silent_wave = np.concatenate([non_silent_wave, generated_wave[start:end]])
generated_wave = non_silent_wave
# spectogram
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_wav:
wav_path = tmp_wav.name
torchaudio.save(wav_path, torch.tensor(generated_wave), target_sample_rate)
return wav_path