YiYiXu's picture
switch-to-yt-dlp-for-faster-dl (#3)
68f6b1d
import torch
import clip
import cv2, yt_dlp
from PIL import Image,ImageDraw, ImageFont
import os
from functools import partial
from multiprocessing.pool import Pool
import shutil
from pathlib import Path
import numpy as np
import datetime
import gradio as gr
# load model and preprocess
device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load("ViT-B/32")
def select_video_format(url, ydl_opts={}, format_note='240p', ext='mp4', max_size = 500000000):
defaults = ['480p', '360p','240p','144p']
ydl_opts = ydl_opts
ydl = yt_dlp.YoutubeDL(ydl_opts)
info_dict = ydl.extract_info(url, download=False)
formats = info_dict.get('formats', None)
# filter out formats we can't process
formats = [f for f in formats if f['ext'] == ext
and f['vcodec'].split('.')[0] != 'av01'
and f['filesize'] is not None and f['filesize'] <= max_size]
available_format_notes = set([f['format_note'] for f in formats])
if format_note not in available_format_notes:
format_note = [d for d in defaults if d in available_format_notes][0]
formats = [f for f in formats if f['format_note'] == format_note]
format = formats[0]
format_id = format.get('format_id', None)
fps = format.get('fps', None)
print(f'format selected: {format}')
return(format, format_id, fps)
def download_video(url):
# create "videos" foder for saved videos
path_videos = Path('videos')
try:
path_videos.mkdir(parents=True)
except FileExistsError:
pass
# clear the "videos" folder
videos_to_keep = ['v1rkzUIL8oc', 'k4R5wZs8cxI','0diCvgWv_ng']
if len(list(path_videos.glob('*'))) > 10:
for path_video in path_videos.glob('*'):
if path_video.stem not in set(videos_to_keep):
path_video.unlink()
print(f'removed video {path_video}')
# select format to download for given video
# by default select 240p and .mp4
try:
format, format_id, fps = select_video_format(url)
ydl_opts = {
'format':format_id,
'outtmpl': "videos/%(id)s.%(ext)s"}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
try:
ydl.cache.remove()
meta = ydl.extract_info(url)
save_location = 'videos/' + meta['id'] + '.' + meta['ext']
except yt_dlp.DownloadError as error:
print(f'error with download_video function: {error}')
save_location = None
except IndexError as err:
print(f"can't find suitable video formats. we are not able to process video larger than 95 Mib at the moment")
fps, save_location = None, None
return(fps, save_location)
def process_video_parallel(video, skip_frames, dest_path, num_processes, process_number):
cap = cv2.VideoCapture(video)
frames_per_process = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) // (num_processes)
count = frames_per_process * process_number
cap.set(cv2.CAP_PROP_POS_FRAMES, count)
print(f"worker: {process_number}, process frames {count} ~ {frames_per_process * (process_number + 1)} \n total number of frames: {cap.get(cv2.CAP_PROP_FRAME_COUNT)} \n video: {video}; isOpen? : {cap.isOpened()}")
while count < frames_per_process * (process_number + 1) :
ret, frame = cap.read()
if not ret:
break
if count % skip_frames ==0:
filename =f"{dest_path}/{count}.jpg"
cv2.imwrite(filename, frame)
count += 1
cap.release()
def vid2frames(url, sampling_interval=1):
# create folder for extracted frames - if folder exists, delete and create a new one
path_frames = Path('frames')
try:
path_frames.mkdir(parents=True)
except FileExistsError:
shutil.rmtree(path_frames)
path_frames.mkdir(parents=True)
# download the video
fps, video = download_video(url)
if video is not None:
if fps is None: fps = 30
skip_frames = int(fps * sampling_interval)
print(f'video saved at: {video}, fps:{fps}, skip_frames: {skip_frames}')
# extract video frames at given sampling interval with multiprocessing -
n_workers = min(os.cpu_count(), 12)
print(f'now extracting frames with {n_workers} process...')
with Pool(n_workers) as pool:
pool.map(partial(process_video_parallel, video, skip_frames, path_frames, n_workers), range(n_workers))
else:
skip_frames, path_frames = None, None
return(skip_frames, path_frames)
def captioned_strip(images, caption=None, times=None, rows=1):
increased_h = 0 if caption is None else 30
w, h = images[0].size[0], images[0].size[1]
img = Image.new("RGB", (len(images) * w // rows, h * rows + increased_h))
for i, img_ in enumerate(images):
img.paste(img_, (i // rows * w, increased_h + (i % rows) * h))
if caption is not None:
draw = ImageDraw.Draw(img)
font = ImageFont.truetype(
"/usr/share/fonts/truetype/liberation2/LiberationMono-Bold.ttf", 16
)
font_small = ImageFont.truetype("/usr/share/fonts/truetype/liberation2/LiberationMono-Bold.ttf", 12)
draw.text((60, 3), caption, (255, 255, 255), font=font)
for i,ts in enumerate(times):
draw.text((
(i // rows) * w + 40 , #column poistion
i % rows * h + 33) # row position
, ts,
(255, 255, 255), font=font_small)
return img
def run_inference(url, sampling_interval, search_query, bs=526):
print(f"search for : {search_query}")
skip_frames, path_frames= vid2frames(url,sampling_interval)
if path_frames is not None:
filenames = sorted(path_frames.glob('*.jpg'),key=lambda p: int(p.stem))
n_frames = len(filenames)
bs = min(n_frames,bs)
print(f"extracted {n_frames} frames, now encoding images")
# encoding images one batch at a time, combine all batch outputs -> image_features, size n_frames x 512
image_features = torch.empty(size=(n_frames, 512),dtype=torch.float32).to(device)
print(f"encoding images, batch size :{bs} ; number of batches: {len(range(0, n_frames,bs))}")
for b in range(0, n_frames,bs):
images = []
# loop through all frames in the batch -> create batch_image_input, size bs x 3 x 224 x 224
for filename in filenames[b:b+bs]:
image = Image.open(filename).convert("RGB")
images.append(preprocess(image))
batch_image_input = torch.tensor(np.stack(images)).to(device)
# encoding batch_image_input -> batch_image_features
with torch.no_grad():
batch_image_features = model.encode_image(batch_image_input)
batch_image_features /= batch_image_features.norm(dim=-1, keepdim=True)
# add encoded image embedding to image_features
image_features[b:b+bs] = batch_image_features
# encoding search query
print(f'encoding search query')
with torch.no_grad():
text_features = model.encode_text(clip.tokenize(search_query).to(device)).to(dtype=torch.float32)
text_features /= text_features.norm(dim=-1, keepdim=True)
similarity = (100.0 * image_features @ text_features.T)
values, indices = similarity.topk(4, dim=0)
print(f"indices for best matches{indices}")
print(f"filenames for best matches {[filenames[i]for i in indices]}")
best_frames = [Image.open(filenames[ind]).convert("RGB") for ind in indices]
times = [f'{datetime.timedelta(seconds = round(ind[0].item() * sampling_interval,2))}' for ind in indices]
image_output = captioned_strip(best_frames,search_query, times,2)
title = search_query
print('task complete')
else:
title = "not able to download video"
image_output = None
return(title, image_output)
inputs = [gr.inputs.Textbox(label="Give us the link to your youtube video! (maximum size 50 MB)"),
gr.Number(1,label='sampling interval (seconds)'),
gr.inputs.Textbox(label="What do you want to search?")]
outputs = [
gr.outputs.HTML(label=""), # To be used as title
gr.outputs.Image(label=""),
]
article = "Check out [this blogpost](https://yiyixuxu.github.io/2022/06/12/It-Happened-One-Frame.html) about this app."
gr.Interface(
run_inference,
inputs=inputs,
outputs=outputs,
title="It Happened One Frame",
description='A CLIP-based app that search YouTube video frame based on text',
article = article,
examples=[
['https://youtu.be/v1rkzUIL8oc', 1, "James Cagney dancing down the stairs"],
['https://youtu.be/k4R5wZs8cxI', 1, "James Cagney smashes a grapefruit into Mae Clarke's face"],
['https://youtu.be/0diCvgWv_ng', 1, "little Deborah practicing her ballet while wearing a tutu in empty restaurant"]
]
).launch(debug=True,enable_queue=True,share=True)