sd-to-diffusers / convert.py
Yntec's picture
Duplicate from diffusers/sd-to-diffusers
2c6a2ce
import gradio as gr
import requests
import os
import shutil
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import Optional
import torch
from io import BytesIO
from huggingface_hub import CommitInfo, Discussion, HfApi, hf_hub_download
from huggingface_hub.file_download import repo_folder_name
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
download_from_original_stable_diffusion_ckpt, download_controlnet_from_original_ckpt
)
from transformers import CONFIG_MAPPING
COMMIT_MESSAGE = " This PR adds fp32 and fp16 weights in PyTorch and safetensors format to {}"
def convert_single(model_id: str, filename: str, model_type: str, sample_size: int, scheduler_type: str, extract_ema: bool, folder: str, progress):
from_safetensors = filename.endswith(".safetensors")
progress(0, desc="Downloading model")
local_file = os.path.join(model_id, filename)
ckpt_file = local_file if os.path.isfile(local_file) else hf_hub_download(repo_id=model_id, filename=filename)
if model_type == "v1":
config_url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml"
elif model_type == "v2":
if sample_size == 512:
config_url = "https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference.yaml"
else:
config_url = "https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference-v.yaml"
elif model_type == "ControlNet":
config_url = (Path(model_id)/"resolve/main"/filename).with_suffix(".yaml")
config_url = "https://huggingface.co/" + str(config_url)
config_file = BytesIO(requests.get(config_url).content)
if model_type == "ControlNet":
progress(0.2, desc="Converting ControlNet Model")
pipeline = download_controlnet_from_original_ckpt(ckpt_file, config_file, image_size=sample_size, from_safetensors=from_safetensors, extract_ema=extract_ema)
to_args = {"dtype": torch.float16}
else:
progress(0.1, desc="Converting Model")
pipeline = download_from_original_stable_diffusion_ckpt(ckpt_file, config_file, image_size=sample_size, scheduler_type=scheduler_type, from_safetensors=from_safetensors, extract_ema=extract_ema)
to_args = {"torch_dtype": torch.float16}
pipeline.save_pretrained(folder)
pipeline.save_pretrained(folder, safe_serialization=True)
pipeline = pipeline.to(**to_args)
pipeline.save_pretrained(folder, variant="fp16")
pipeline.save_pretrained(folder, safe_serialization=True, variant="fp16")
return folder
def previous_pr(api: "HfApi", model_id: str, pr_title: str) -> Optional["Discussion"]:
try:
discussions = api.get_repo_discussions(repo_id=model_id)
except Exception:
return None
for discussion in discussions:
if discussion.status == "open" and discussion.is_pull_request and discussion.title == pr_title:
details = api.get_discussion_details(repo_id=model_id, discussion_num=discussion.num)
if details.target_branch == "refs/heads/main":
return discussion
def convert(token: str, model_id: str, filename: str, model_type: str, sample_size: int = 512, scheduler_type: str = "pndm", extract_ema: bool = True, progress=gr.Progress()):
api = HfApi()
pr_title = "Adding `diffusers` weights of this model"
with TemporaryDirectory() as d:
folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models"))
os.makedirs(folder)
new_pr = None
try:
folder = convert_single(model_id, filename, model_type, sample_size, scheduler_type, extract_ema, folder, progress)
progress(0.7, desc="Uploading to Hub")
new_pr = api.upload_folder(folder_path=folder, path_in_repo="./", repo_id=model_id, repo_type="model", token=token, commit_message=pr_title, commit_description=COMMIT_MESSAGE.format(model_id), create_pr=True)
pr_number = new_pr.split("%2F")[-1].split("/")[0]
link = f"Pr created at: {'https://huggingface.co/' + os.path.join(model_id, 'discussions', pr_number)}"
progress(1, desc="Done")
except Exception as e:
raise gr.exceptions.Error(str(e))
finally:
shutil.rmtree(folder)
return link