File size: 9,906 Bytes
6ed1db6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import torch
import yaml, os
from diffusers.pipelines import FluxPipeline
from typing import List, Union, Optional, Dict, Any, Callable
from .transformer import tranformer_forward
from .condition import Condition

from diffusers.pipelines.flux.pipeline_flux import (
    FluxPipelineOutput,
    calculate_shift,
    retrieve_timesteps,
    np,
)


def prepare_params(
    prompt: Union[str, List[str]] = None,
    prompt_2: Optional[Union[str, List[str]]] = None,
    height: Optional[int] = 512,
    width: Optional[int] = 512,
    num_inference_steps: int = 28,
    timesteps: List[int] = None,
    guidance_scale: float = 3.5,
    num_images_per_prompt: Optional[int] = 1,
    generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
    latents: Optional[torch.FloatTensor] = None,
    prompt_embeds: Optional[torch.FloatTensor] = None,
    pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
    output_type: Optional[str] = "pil",
    return_dict: bool = True,
    joint_attention_kwargs: Optional[Dict[str, Any]] = None,
    callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
    callback_on_step_end_tensor_inputs: List[str] = ["latents"],
    max_sequence_length: int = 512,
    **kwargs: dict,
):
    return (
        prompt,
        prompt_2,
        height,
        width,
        num_inference_steps,
        timesteps,
        guidance_scale,
        num_images_per_prompt,
        generator,
        latents,
        prompt_embeds,
        pooled_prompt_embeds,
        output_type,
        return_dict,
        joint_attention_kwargs,
        callback_on_step_end,
        callback_on_step_end_tensor_inputs,
        max_sequence_length,
    )


def seed_everything(seed: int = 42):
    torch.backends.cudnn.deterministic = True
    torch.manual_seed(seed)
    np.random.seed(seed)


@torch.no_grad()
def generate(
    pipeline: FluxPipeline,
    conditions: List[Condition] = None,
    model_config: Optional[Dict[str, Any]] = {},
    condition_scale: float = 1.0,
    **params: dict,
):
    # model_config = model_config or get_config(config_path).get("model", {})
    if condition_scale != 1:
        for name, module in pipeline.transformer.named_modules():
            if not name.endswith(".attn"):
                continue
            module.c_factor = torch.ones(1, 1) * condition_scale

    self = pipeline
    (
        prompt,
        prompt_2,
        height,
        width,
        num_inference_steps,
        timesteps,
        guidance_scale,
        num_images_per_prompt,
        generator,
        latents,
        prompt_embeds,
        pooled_prompt_embeds,
        output_type,
        return_dict,
        joint_attention_kwargs,
        callback_on_step_end,
        callback_on_step_end_tensor_inputs,
        max_sequence_length,
    ) = prepare_params(**params)

    height = height or self.default_sample_size * self.vae_scale_factor
    width = width or self.default_sample_size * self.vae_scale_factor

    # 1. Check inputs. Raise error if not correct
    self.check_inputs(
        prompt,
        prompt_2,
        height,
        width,
        prompt_embeds=prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
        max_sequence_length=max_sequence_length,
    )

    self._guidance_scale = guidance_scale
    self._joint_attention_kwargs = joint_attention_kwargs
    self._interrupt = False

    # 2. Define call parameters
    if prompt is not None and isinstance(prompt, str):
        batch_size = 1
    elif prompt is not None and isinstance(prompt, list):
        batch_size = len(prompt)
    else:
        batch_size = prompt_embeds.shape[0]

    device = self._execution_device

    lora_scale = (
        self.joint_attention_kwargs.get("scale", None)
        if self.joint_attention_kwargs is not None
        else None
    )
    (
        prompt_embeds,
        pooled_prompt_embeds,
        text_ids,
    ) = self.encode_prompt(
        prompt=prompt,
        prompt_2=prompt_2,
        prompt_embeds=prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        device=device,
        num_images_per_prompt=num_images_per_prompt,
        max_sequence_length=max_sequence_length,
        lora_scale=lora_scale,
    )

    # 4. Prepare latent variables
    num_channels_latents = self.transformer.config.in_channels // 4
    latents, latent_image_ids = self.prepare_latents(
        batch_size * num_images_per_prompt,
        num_channels_latents,
        height,
        width,
        prompt_embeds.dtype,
        device,
        generator,
        latents,
    )

    # 4.1. Prepare conditions
    condition_latents, condition_ids, condition_type_ids = ([] for _ in range(3))
    use_condition = conditions is not None or []
    if use_condition:
        assert len(conditions) <= 1, "Only one condition is supported for now."
        pipeline.set_adapters(conditions[0].condition_type)
        for condition in conditions:
            tokens, ids, type_id = condition.encode(self)
            condition_latents.append(tokens)  # [batch_size, token_n, token_dim]
            condition_ids.append(ids)  # [token_n, id_dim(3)]
            condition_type_ids.append(type_id)  # [token_n, 1]
        condition_latents = torch.cat(condition_latents, dim=1)
        condition_ids = torch.cat(condition_ids, dim=0)
        if condition.condition_type == "subject":
            condition_ids[:, 2] += width // 16
        condition_type_ids = torch.cat(condition_type_ids, dim=0)

    # 5. Prepare timesteps
    sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
    image_seq_len = latents.shape[1]
    mu = calculate_shift(
        image_seq_len,
        self.scheduler.config.base_image_seq_len,
        self.scheduler.config.max_image_seq_len,
        self.scheduler.config.base_shift,
        self.scheduler.config.max_shift,
    )
    timesteps, num_inference_steps = retrieve_timesteps(
        self.scheduler,
        num_inference_steps,
        device,
        timesteps,
        sigmas,
        mu=mu,
    )
    num_warmup_steps = max(
        len(timesteps) - num_inference_steps * self.scheduler.order, 0
    )
    self._num_timesteps = len(timesteps)

    # 6. Denoising loop
    with self.progress_bar(total=num_inference_steps) as progress_bar:
        for i, t in enumerate(timesteps):
            if self.interrupt:
                continue

            # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
            timestep = t.expand(latents.shape[0]).to(latents.dtype)

            # handle guidance
            if self.transformer.config.guidance_embeds:
                guidance = torch.tensor([guidance_scale], device=device)
                guidance = guidance.expand(latents.shape[0])
            else:
                guidance = None
            noise_pred = tranformer_forward(
                self.transformer,
                model_config=model_config,
                # Inputs of the condition (new feature)
                condition_latents=condition_latents if use_condition else None,
                condition_ids=condition_ids if use_condition else None,
                condition_type_ids=condition_type_ids if use_condition else None,
                # Inputs to the original transformer
                hidden_states=latents,
                # YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing)
                timestep=timestep / 1000,
                guidance=guidance,
                pooled_projections=pooled_prompt_embeds,
                encoder_hidden_states=prompt_embeds,
                txt_ids=text_ids,
                img_ids=latent_image_ids,
                joint_attention_kwargs=self.joint_attention_kwargs,
                return_dict=False,
            )[0]

            # compute the previous noisy sample x_t -> x_t-1
            latents_dtype = latents.dtype
            latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]

            if latents.dtype != latents_dtype:
                if torch.backends.mps.is_available():
                    # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
                    latents = latents.to(latents_dtype)

            if callback_on_step_end is not None:
                callback_kwargs = {}
                for k in callback_on_step_end_tensor_inputs:
                    callback_kwargs[k] = locals()[k]
                callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                latents = callback_outputs.pop("latents", latents)
                prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)

            # call the callback, if provided
            if i == len(timesteps) - 1 or (
                (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
            ):
                progress_bar.update()

    if output_type == "latent":
        image = latents

    else:
        latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
        latents = (
            latents / self.vae.config.scaling_factor
        ) + self.vae.config.shift_factor
        image = self.vae.decode(latents, return_dict=False)[0]
        image = self.image_processor.postprocess(image, output_type=output_type)

    # Offload all models
    self.maybe_free_model_hooks()

    if condition_scale != 1:
        for name, module in pipeline.transformer.named_modules():
            if not name.endswith(".attn"):
                continue
            del module.c_factor

    if not return_dict:
        return (image,)

    return FluxPipelineOutput(images=image)