# Bismillahir Rahmaanir Raheem # Almadadh Ya Gause Radi Allahu Ta'alah Anh - Ameen from fastai.vision.all import * import gradio as gr def is_pneumonia(x): return (x.find('virus')!=-1 or x.find('bacteria')!=-1) # load the trained fast ai model for predictions learn = load_learner('model.pkl') # define the function to call categories = ('Pneumonia', 'Normal') def predict(img): pred, idx, probs = learn.predict(img) return dict(zip(categories, map(float, probs))) title = "Pediatric Pneumonia Chest X-Ray Predictor" description = "A pediatric pneumonia chest x-ray predictor model trained on the chest-xray-pneumonia dataset using ResNet18 via fast.ai. The dataset is from: Chest X-Ray Images (Pneumonia) and the associated scientific journal paper is Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning. The accuracy of the model is: 81.25%" article = "
Pediatric Pneumonia Chest X-Ray Predictor. Zakia Salod. 2022.
" image = gr.inputs.Image(shape=(512, 512)) label = gr.outputs.Label() examples = [ ['person1_virus_6.jpeg'], ['NORMAL2-IM-0285-0001.jpeg'], ['person82_bacteria_404.jpeg'], ['NORMAL2-IM-0373-0001.jpeg'], ['person1618_virus_2805.jpeg'], ['NORMAL2-IM-0381-0001.jpeg'], ['person159_bacteria_747.jpeg'], ['NORMAL2-IM-0222-0001.jpeg'], ] interpretation = 'default' enable_queue = True iface = gr.Interface( fn=predict, title=title, description=description, article=article, inputs=image, outputs=label, theme="default", examples=examples, interpretation=interpretation, enable_queue=enable_queue ) iface.launch(inline=False)