Zeitstaub's picture
Update app.py
471ebd4 verified
import gradio as gr
import numpy as np
import pandas as pd
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import euclidean_distances
# Load DataFrame
text_embeddings = pd.read_parquet('text_embeddings_abstract_generated_by_LLM.parquet')
# Initialize models
model_all_Mini = SentenceTransformer('all-MiniLM-L6-v2')
model_e5_large_v2 = SentenceTransformer('intfloat/e5-large-v2')
model_e5_small_v2 = SentenceTransformer('intfloat/e5-small-v2')
model_gte_large = SentenceTransformer('thenlper/gte-large')
model_GIST_large = SentenceTransformer('avsolatorio/GIST-large-Embedding-v0')
# Model selection drop-down list
model_options = {
'all-MiniLM-L6-v2': model_all_Mini,
'intfloat/e5-large-v2': model_e5_large_v2,
'intfloat/e5-small-v2': model_e5_small_v2,
'thenlper/gte-large': model_gte_large,
'avsolatorio/GIST-large-Embedding-v0': model_GIST_large
}
# Main function for the Gradio interface
def find_similar_texts(model_name, input_text):
# Check whether model has been selected
if not model_name:
return "You have forgotten to select a sentence-transformer."
# Check whether there are abstracts matching the text input
input_embedding_mini = model_all_Mini.encode(input_text).reshape(1, -1)
embedding_matrix_mini = np.vstack(text_embeddings['embedding_all-MiniLM-L6-v2'])
distances_mini = euclidean_distances(embedding_matrix_mini, input_embedding_mini).flatten()
# Only continue if similar abstract found
if any(distances_mini < 1.05):
selected_model = model_options[model_name]
embedding_column = 'embedding_' + model_name
input_embedding = selected_model.encode(input_text).reshape(1, -1)
embedding_matrix = np.vstack(text_embeddings[embedding_column])
distances = euclidean_distances(embedding_matrix, input_embedding).flatten()
text_embeddings['euclidean_distance'] = distances
sorted_embeddings = text_embeddings.sort_values(by='euclidean_distance', ascending=True)
top_five = sorted_embeddings.head(5)[['abstract', 'patent no', 'title']]
# formatted_output = '\n\n'.join([f"<Patent No: {row['patent no']}\nTitle: {row['title']}\nAbstract: {row['abstract']}" for index, row in top_five.iterrows()])
formatted_output = '<br><br>'.join([
f"<strong>Patent No:</strong> {row['patent no']}<br>"
f"<strong>Title:</strong> {row['title']}<br>"
f"<strong>Abstract:</strong> {row['abstract']}<br>"
for index, row in top_five.iterrows()
])
return formatted_output
else:
return "It seems there is no patent abstract close to your description."
# Create Gradio interface using Blocks
with gr.Blocks() as demo:
gr.Markdown("## Sentence-Transformer based AI-Generated-Patent-Abstract Search")
with gr.Row():
with gr.Column():
model_selector = gr.Dropdown(choices=list(model_options.keys()), label="Choose Sentence-Transformer")
text_input = gr.Textbox(lines=2, placeholder="machine learning for drug dosing", label="Input Text (example: machine learning for drug dosing. Remark: This is only a small number of AI generated machine learning patents!)")
submit_button = gr.Button("Search")
with gr.Column():
output = gr.HTML(label="Top 5 Patent Abstracts")
submit_button.click(find_similar_texts, inputs=[model_selector, text_input], outputs=output)
gr.Markdown("""
### Description
This demo app leverages several Sentence Transformer models to compute the semantic distance between user input and a small number of AI generated patent abstracts in the field of machine learning and AI.
- 'all-MiniLM-L6-v2': embedding size is 384. [More info](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) and [here](https://sbert.net/).
- 'intfloat/e5-large-v2'. Text Embeddings by Weakly-Supervised Contrastive Pre-training, embedding size is 1024. [More info](https://huggingface.co/intfloat/e5-large-v2).
- 'intfloat/e5-small-v2': Text Embeddings by Weakly-Supervised Contrastive Pre-training, embedding size is 384. [More info](https://huggingface.co/intfloat/e5-small-v2).
- 'thenlper/gte-large': General Text Embeddings (GTE) model, embedding size is 1024. [More info](https://huggingface.co/thenlper/gte-large) and [here](https://arxiv.org/abs/2308.03281).
- 'avsolatorio/GIST-large-Embedding-v0': Fine-tuned on top of the BAAI/bge-large-en-v1.5 using the MEDI dataset augmented with mined triplets from the MTEB Classification training dataset, embedding size is 1024. [More info](https://huggingface.co/avsolatorio/GIST-large-Embedding-v0) and [here](https://arxiv.org/abs/2402.16829).
<strong>Please note: The patent data used in this demo are AI generated. This app is intended only for demonstration purposes.
""")
model_selector.change(find_similar_texts, inputs=[model_selector, text_input], outputs=output)
text_input.submit(find_similar_texts, inputs=[model_selector, text_input], outputs=output)
demo.launch()
#The patents can be viewed at [Espacenet](https://worldwide.espacenet.com/?locale=en_EP), the free onine service by the European Patent Office.